H. Park, HyunYong Lee, Hongryul Ryu, Dongho Kim, Hyun-Soo Kim, Hyesoo Park, Sangryong Lee, H. Yi
{"title":"Development of Prototype of Two Axis Gimbal-Type Platform in Underwater","authors":"H. Park, HyunYong Lee, Hongryul Ryu, Dongho Kim, Hyun-Soo Kim, Hyesoo Park, Sangryong Lee, H. Yi","doi":"10.1115/IMECE2020-23661","DOIUrl":null,"url":null,"abstract":"\n The Bottom-mounted ocean-observation platforms installed on the seabed have been used for marine environment analysis. The role of the observing platform is to collect precise observation data without human assistance. However, their working environment is very harsh so the typical device could not afford to provide easy accessibility during their working period. Existing bottom-mounted ocean-observation platforms have been difficult to collect continuous observation data. Therefore, this paper suggests a new ocean-observation platform for precise measurement of the marine environment. Suggested platform uses a PID control method to be applied for error compensation of each axis of gimbal. To verify the system performance, the experiment was carried out in the air with the external force applied to this system.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Bottom-mounted ocean-observation platforms installed on the seabed have been used for marine environment analysis. The role of the observing platform is to collect precise observation data without human assistance. However, their working environment is very harsh so the typical device could not afford to provide easy accessibility during their working period. Existing bottom-mounted ocean-observation platforms have been difficult to collect continuous observation data. Therefore, this paper suggests a new ocean-observation platform for precise measurement of the marine environment. Suggested platform uses a PID control method to be applied for error compensation of each axis of gimbal. To verify the system performance, the experiment was carried out in the air with the external force applied to this system.