Machine Learning in a Dynamic Limit Order Market

R. Philip
{"title":"Machine Learning in a Dynamic Limit Order Market","authors":"R. Philip","doi":"10.2139/ssrn.3630018","DOIUrl":null,"url":null,"abstract":"We use a novel machine learning approach to tackle the problem of limit order management. Applying our framework to data, we show that the most important variable for a trader to consider is the price level of their order, followed by the queue sizes of the order book, volatility and finally queue position. Further, we show the option to cancel a limit order is valuable and contributes approximately 15% of a limit order's total expected value. This paper takes an important step towards describing pervasive features and dynamics that exist in financial markets.","PeriodicalId":18611,"journal":{"name":"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3630018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use a novel machine learning approach to tackle the problem of limit order management. Applying our framework to data, we show that the most important variable for a trader to consider is the price level of their order, followed by the queue sizes of the order book, volatility and finally queue position. Further, we show the option to cancel a limit order is valuable and contributes approximately 15% of a limit order's total expected value. This paper takes an important step towards describing pervasive features and dynamics that exist in financial markets.
动态限价订单市场中的机器学习
我们使用一种新颖的机器学习方法来解决限价订单管理的问题。将我们的框架应用于数据,我们表明交易者需要考虑的最重要的变量是他们订单的价格水平,其次是订单的队列大小,波动性,最后是队列位置。此外,我们还展示了取消限价订单的选项是有价值的,它约占限价订单总预期价值的15%。本文在描述金融市场中普遍存在的特征和动态方面迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信