{"title":"On the Expected ℒ2–Discrepancy of Jittered Sampling","authors":"Nathan Kirk, Florian Pausinger","doi":"10.2478/udt-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract For m, d ∈ ℕ, a jittered sample of N = md points can be constructed by partitioning [0, 1]d into md axis-aligned equivolume boxes and placing one point independently and uniformly at random inside each box. We utilise a formula for the expected ℒ2−discrepancy of stratified samples stemming from general equivolume partitions of [0, 1]d which recently appeared, to derive a closed form expression for the expected ℒ2−discrepancy of a jittered point set for any m, d ∈ ℕ. As a second main result we derive a similar formula for the expected Hickernell ℒ2−discrepancy of a jittered point set which also takes all projections of the point set to lower dimensional faces of the unit cube into account.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"16 1","pages":"65 - 82"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract For m, d ∈ ℕ, a jittered sample of N = md points can be constructed by partitioning [0, 1]d into md axis-aligned equivolume boxes and placing one point independently and uniformly at random inside each box. We utilise a formula for the expected ℒ2−discrepancy of stratified samples stemming from general equivolume partitions of [0, 1]d which recently appeared, to derive a closed form expression for the expected ℒ2−discrepancy of a jittered point set for any m, d ∈ ℕ. As a second main result we derive a similar formula for the expected Hickernell ℒ2−discrepancy of a jittered point set which also takes all projections of the point set to lower dimensional faces of the unit cube into account.