Addressee Detection Using Facial and Audio Features in Mixed Human–Human and Human–Robot Settings: A Deep Learning Framework

IF 1.9 Q3 COMPUTER SCIENCE, CYBERNETICS
Fiseha B. Tesema, J. Gu, Wei Song, Hong-Chuan Wu, Shiqiang Zhu, Zheyuan Lin, Min Huang, Wen Wang, R. Kumar
{"title":"Addressee Detection Using Facial and Audio Features in Mixed Human–Human and Human–Robot Settings: A Deep Learning Framework","authors":"Fiseha B. Tesema, J. Gu, Wei Song, Hong-Chuan Wu, Shiqiang Zhu, Zheyuan Lin, Min Huang, Wen Wang, R. Kumar","doi":"10.1109/MSMC.2022.3224843","DOIUrl":null,"url":null,"abstract":"Addressee detection (AD) enables robots to interact smoothly with a human by distinguishing whether it is being addressed. However, this has not been widely explored. The few studies that have explored this area focused on a human-to-human or human-to-robot conversation confined inside a meeting room using gaze and utterance. These works used statistical and rule-based approaches, which tend to depend on specific settings. Further, they did not fully leverage the available audio and visual information or the short-term and long-term segments, and they have not explored combining important conversation cues—the facial and audio features. In addition, no audiovisual spatiotemporal annotated dataset captured in mixed human-to-human and human-to-robot settings is available to support exploring the area using new approaches.","PeriodicalId":43649,"journal":{"name":"IEEE Systems Man and Cybernetics Magazine","volume":"13 1","pages":"25-38"},"PeriodicalIF":1.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Man and Cybernetics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMC.2022.3224843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

Addressee detection (AD) enables robots to interact smoothly with a human by distinguishing whether it is being addressed. However, this has not been widely explored. The few studies that have explored this area focused on a human-to-human or human-to-robot conversation confined inside a meeting room using gaze and utterance. These works used statistical and rule-based approaches, which tend to depend on specific settings. Further, they did not fully leverage the available audio and visual information or the short-term and long-term segments, and they have not explored combining important conversation cues—the facial and audio features. In addition, no audiovisual spatiotemporal annotated dataset captured in mixed human-to-human and human-to-robot settings is available to support exploring the area using new approaches.
在人机和人机混合设置中使用面部和音频特征的收件人检测:一个深度学习框架
收件人检测(AD)使机器人能够通过识别是否有人对其进行称呼而顺利地与人进行交互。然而,这并没有得到广泛的探索。探索这一领域的少数研究主要集中在会议室内的人与人或人与人之间的对话,使用凝视和话语。这些工作使用统计和基于规则的方法,这些方法往往依赖于特定的设置。此外,他们没有充分利用可用的音频和视觉信息或短期和长期的部分,他们没有探索结合重要的对话线索-面部和音频特征。此外,没有在混合人对人和人对机器人设置中捕获的视听时空注释数据集可用于支持使用新方法探索该地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Systems Man and Cybernetics Magazine
IEEE Systems Man and Cybernetics Magazine COMPUTER SCIENCE, CYBERNETICS-
自引率
6.20%
发文量
60
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信