{"title":"Some classes of topological spaces related to zero-sets","authors":"F. Golrizkhatami, Asghar Taherifar","doi":"10.4995/agt.2022.15668","DOIUrl":null,"url":null,"abstract":"An almost P-space is a topological space in which every zero-set is regular-closed. We introduce a large class of spaces, C-almost P-space (briefly CAP-space), consisting of those spaces in which the closure of the interior of every zero-set is a zero-set. In this paper we study CAP-spaces. It is proved that if X is a dense and Z#-embedded subspace of a space T, then T is CAP if and only if X is a CAP and CRZ-extended in T (i.e, for each regular-closed zero-set Z in X, clTZ is a zero-set in T). In 6P.5 of [8] it was shown that a closed countable union of zero-sets need not be a zero-set. We call X a CZ-space whenever the closure of any countable union of zero-sets is a zero-set. This class of spaces contains the class of P-spaces, perfectly normal spaces, and is contained in the cozero complemented spaces and CAP-spaces. In this paper we study topological properties of CZ (resp. cozero complemented)-space and other classes of topological spaces near to them. Some algebraic and topological equivalent conditions of CZ (resp. cozero complemented)-space are characterized. Examples are provided to illustrate and delimit our results.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2022.15668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
An almost P-space is a topological space in which every zero-set is regular-closed. We introduce a large class of spaces, C-almost P-space (briefly CAP-space), consisting of those spaces in which the closure of the interior of every zero-set is a zero-set. In this paper we study CAP-spaces. It is proved that if X is a dense and Z#-embedded subspace of a space T, then T is CAP if and only if X is a CAP and CRZ-extended in T (i.e, for each regular-closed zero-set Z in X, clTZ is a zero-set in T). In 6P.5 of [8] it was shown that a closed countable union of zero-sets need not be a zero-set. We call X a CZ-space whenever the closure of any countable union of zero-sets is a zero-set. This class of spaces contains the class of P-spaces, perfectly normal spaces, and is contained in the cozero complemented spaces and CAP-spaces. In this paper we study topological properties of CZ (resp. cozero complemented)-space and other classes of topological spaces near to them. Some algebraic and topological equivalent conditions of CZ (resp. cozero complemented)-space are characterized. Examples are provided to illustrate and delimit our results.
期刊介绍:
The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.