Econometric Equilibria for Non-Cooperative Games

Enrico G. De Giorgi, Andrin Pelican
{"title":"Econometric Equilibria for Non-Cooperative Games","authors":"Enrico G. De Giorgi, Andrin Pelican","doi":"10.2139/ssrn.3773399","DOIUrl":null,"url":null,"abstract":"Game theory and econometrics are central tools in economic analysis. In this paper, we study what happens if players in a game use econometric tools to form their opinion about the other players' behavior. In particular, we analyze the case where each player observes a number of outcomes of a game. From these observations she forms her beliefs about other players’ strategies. She then plays her best answer strategy. We show that in this framework an equilibrium exists, which we call the econometric equilibrium. The econometric equilibrium generally differs from the Nash equilibrium. However, it converges to a Nash equilibrium if the number of observations of the game increases to infinity.","PeriodicalId":18611,"journal":{"name":"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3773399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Game theory and econometrics are central tools in economic analysis. In this paper, we study what happens if players in a game use econometric tools to form their opinion about the other players' behavior. In particular, we analyze the case where each player observes a number of outcomes of a game. From these observations she forms her beliefs about other players’ strategies. She then plays her best answer strategy. We show that in this framework an equilibrium exists, which we call the econometric equilibrium. The econometric equilibrium generally differs from the Nash equilibrium. However, it converges to a Nash equilibrium if the number of observations of the game increases to infinity.
非合作博弈的计量经济均衡
博弈论和计量经济学是经济分析的核心工具。在本文中,我们研究了如果游戏中的玩家使用计量经济学工具来形成他们对其他玩家行为的看法会发生什么。特别地,我们分析了每个玩家观察游戏的多个结果的情况。通过这些观察,她形成了对其他玩家策略的看法。然后她会使出最佳回答策略。我们证明在这个框架中存在一种均衡,我们称之为计量经济均衡。计量经济学均衡通常不同于纳什均衡。然而,如果博弈的观察数量增加到无穷大,它收敛到纳什均衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信