Environmental Life-Cycle Assessment of Arable Crop Production Technologies Compared to Different Harvesting Work Systems in Short Rotation Energy Plantations
A. Polgár, Z. Kovács, Veronika Elekné Fodor, A. Bidló
{"title":"Environmental Life-Cycle Assessment of Arable Crop Production Technologies Compared to Different Harvesting Work Systems in Short Rotation Energy Plantations","authors":"A. Polgár, Z. Kovács, Veronika Elekné Fodor, A. Bidló","doi":"10.2478/aslh-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.","PeriodicalId":53620,"journal":{"name":"Acta Silvatica et Lignaria Hungarica","volume":"8 1","pages":"55 - 68"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Silvatica et Lignaria Hungarica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aslh-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.