Synthesis and Evaluation of Magnetic Nanoparticles for Biomedical Applications

Nydeia W. Bolden, V. Rangari, S. Jeelani, S. Boyoglu, S. Singh
{"title":"Synthesis and Evaluation of Magnetic Nanoparticles for Biomedical Applications","authors":"Nydeia W. Bolden, V. Rangari, S. Jeelani, S. Boyoglu, S. Singh","doi":"10.1155/2013/370812","DOIUrl":null,"url":null,"abstract":"In this study, iron oxide (IO) nanoparticles from various precursors have been synthesized using sonochemical method and characterized for their structural variability and toxicity. The iron oxide (IO) precursor solutions were prepared from iron acetate (IA), iron pentacarbonyl (IP), decalin, PEG (poly(ethylene glycol)), EG (ethylene glycol), PVA (poly(vinyl alcohol)), β-cyclodextrin (CD), and distilled water. These precursor solutions were irradiated with high power ultrasound for 3 hours and heat treated as needed. These as-prepared iron oxide nanoparticles were characterized using X-ray diffraction (XRD), Mossbauer spectroscopy, transmission electron microscopy (TEM), and magnetization measurements. XRD results show that all the particles are highly crystalline in nature and the particles sizes measured from TEM are approximately 5–20 nm. The maximum magnetization was observed for IO-IP at approximately 60.17 emu/g and the minimum was approximately 30.56 emu/g for IO-IA. These results confirm that the particles are superparamagnetic (SPM) in nature. Mossbauer spectroscopy verified the magnetic nanoparticles are purely Fe3O4 and particles sizes varied by the nature of the precursor and coatings.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"76 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/370812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this study, iron oxide (IO) nanoparticles from various precursors have been synthesized using sonochemical method and characterized for their structural variability and toxicity. The iron oxide (IO) precursor solutions were prepared from iron acetate (IA), iron pentacarbonyl (IP), decalin, PEG (poly(ethylene glycol)), EG (ethylene glycol), PVA (poly(vinyl alcohol)), β-cyclodextrin (CD), and distilled water. These precursor solutions were irradiated with high power ultrasound for 3 hours and heat treated as needed. These as-prepared iron oxide nanoparticles were characterized using X-ray diffraction (XRD), Mossbauer spectroscopy, transmission electron microscopy (TEM), and magnetization measurements. XRD results show that all the particles are highly crystalline in nature and the particles sizes measured from TEM are approximately 5–20 nm. The maximum magnetization was observed for IO-IP at approximately 60.17 emu/g and the minimum was approximately 30.56 emu/g for IO-IA. These results confirm that the particles are superparamagnetic (SPM) in nature. Mossbauer spectroscopy verified the magnetic nanoparticles are purely Fe3O4 and particles sizes varied by the nature of the precursor and coatings.
磁性纳米颗粒生物医学应用的合成与评价
在本研究中,利用声化学方法合成了不同前体的氧化铁纳米颗粒,并对其结构变异性和毒性进行了表征。以乙酸铁(IA)、五羰基铁(IP)、十氢化萘、聚乙二醇(PEG)、乙二醇(EG)、聚乙烯醇(PVA)、β-环糊精(CD)和蒸馏水为原料制备氧化铁(IO)前驱体溶液。这些前驱体溶液用高功率超声照射3小时,并根据需要进行热处理。利用x射线衍射(XRD)、穆斯堡尔光谱(Mossbauer spectroscopy)、透射电子显微镜(TEM)和磁化测量对这些制备的氧化铁纳米颗粒进行了表征。XRD结果表明,所有颗粒均为高结晶性质,TEM测得的颗粒尺寸约为5 ~ 20 nm。IO-IP的最大磁化强度约为60.17 emu/g, IO-IA的最小磁化强度约为30.56 emu/g。这些结果证实了这些粒子在本质上是超顺磁性的。穆斯堡尔光谱验证了磁性纳米颗粒是纯Fe3O4,颗粒大小随前驱体和涂层的性质而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信