{"title":"Two-sample Tests for Functional Data Using Characteristic Functions","authors":"M. Krzyśko, Łukasz Smaga","doi":"10.17713/AJS.V50I4.1099","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the two-sample problem for univariate and multivariate functional data. To solve this problem, we use tool of characteristic function and a basis function representation of functional data. We construct test statistics for conformity of distributions based on a weighted distance between characteristic functions of random vectors obtained in basis representation. Different weight functions result in different test statistics, whose distributions are approximated by permutation method. Testing procedures are implemented in the R program and the code is available. Simulation study shows good finite sample properties of proposed methods, while real data example illustrates the application of them.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/AJS.V50I4.1099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we consider the two-sample problem for univariate and multivariate functional data. To solve this problem, we use tool of characteristic function and a basis function representation of functional data. We construct test statistics for conformity of distributions based on a weighted distance between characteristic functions of random vectors obtained in basis representation. Different weight functions result in different test statistics, whose distributions are approximated by permutation method. Testing procedures are implemented in the R program and the code is available. Simulation study shows good finite sample properties of proposed methods, while real data example illustrates the application of them.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.