Timing intermittent demand with time-varying order-up-to levels

Dennis Prak, Patricia Rogetzer
{"title":"Timing intermittent demand with time-varying order-up-to levels","authors":"Dennis Prak, Patricia Rogetzer","doi":"10.2139/ssrn.3916846","DOIUrl":null,"url":null,"abstract":"Current intermittent demand inventory control models assume that the demand interval is memoryless: the probability of observing a positive demand does not depend on the time since the last demand oc-curred. Contrarily, several forecasting contributions suggest that demand intervals contain more distributional information. We find that the data of the M5 forecasting competition confirms this. Therefore, we propose an inventory control model that explicitly uses the full distributions of the demand sizes and intervals and thereby acknowledges that the probability of a demand occurrence may vary throughout the interval. To exploit this information, we also allow for time-varying order-up-to levels that flexibly adjust inventories according to the dynamic requirements. We derive the long-run average holding costs, non-stockout probability, order fill rate","PeriodicalId":11868,"journal":{"name":"Eur. J. Oper. Res.","volume":"19 1","pages":"1126-1136"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3916846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current intermittent demand inventory control models assume that the demand interval is memoryless: the probability of observing a positive demand does not depend on the time since the last demand oc-curred. Contrarily, several forecasting contributions suggest that demand intervals contain more distributional information. We find that the data of the M5 forecasting competition confirms this. Therefore, we propose an inventory control model that explicitly uses the full distributions of the demand sizes and intervals and thereby acknowledges that the probability of a demand occurrence may vary throughout the interval. To exploit this information, we also allow for time-varying order-up-to levels that flexibly adjust inventories according to the dynamic requirements. We derive the long-run average holding costs, non-stockout probability, order fill rate
定时间歇需求与时变的顺序至水平
当前的间歇性需求库存控制模型假设需求间隔是无记忆的:观察到正需求的概率不依赖于上次需求发生后的时间。相反,一些预测贡献表明需求区间包含更多的分布信息。我们发现M5预测竞赛的数据证实了这一点。因此,我们提出了一个库存控制模型,该模型明确地使用了需求规模和间隔的完整分布,从而承认需求发生的概率在整个间隔中可能会变化。为了利用这些信息,我们还允许根据动态需求灵活调整库存的随时间变化的订货至最高水平。我们推导出长期平均持有成本,非缺货概率,订单填充率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信