On decay of solution to linear parabolic equation with double degeneracy

IF 0.5 Q3 MATHEMATICS
V. F. Vil'danova
{"title":"On decay of solution to linear parabolic equation with double degeneracy","authors":"V. F. Vil'danova","doi":"10.13108/2016-8-1-35","DOIUrl":null,"url":null,"abstract":". We obtain the upper bound for the decay rate of the solution to the Dirichlet initial boundary value problem for a linear parabolic second order equation with a double degeneracy 𝜇 ( 𝑥 ) 𝑢 𝑡 = ( 𝜌 ( 𝑥 ) 𝑎 𝑖𝑗 ( 𝑡, 𝑥 ) 𝑢 𝑥 𝑖 ) 𝑥 𝑗 in an unbounded domain. For a wide class of revolution domains we prove a lower bound. We adduce the examples showing that the upper and lower bounds are in some sense sharp. We prove the unique solvability of the problem in an unbounded domain by Galerkin’s approximations method.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"50 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2016-8-1-35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. We obtain the upper bound for the decay rate of the solution to the Dirichlet initial boundary value problem for a linear parabolic second order equation with a double degeneracy 𝜇 ( 𝑥 ) 𝑢 𝑡 = ( 𝜌 ( 𝑥 ) 𝑎 𝑖𝑗 ( 𝑡, 𝑥 ) 𝑢 𝑥 𝑖 ) 𝑥 𝑗 in an unbounded domain. For a wide class of revolution domains we prove a lower bound. We adduce the examples showing that the upper and lower bounds are in some sense sharp. We prove the unique solvability of the problem in an unbounded domain by Galerkin’s approximations method.
双简并线性抛物型方程解的衰减
. 我们得到了无界域上具有双重退化的线性抛物型二阶方程的Dirichlet初边值问题解的衰减率的上界:𝑢𝑡=(𝜌(显性)𝑎𝑗(𝑡,显性)𝑢显性)𝑗。对于一类广泛的旋转区域,我们证明了下界。我们引用的例子表明,上界和下界在某种意义上是尖锐的。用伽辽金近似方法证明了该问题在无界区域上的唯一可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信