Synthesis of zircon pigments from rice husk ash and their performance in ceramic glaze

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
N. Yongvanich, Peerapat Soysom, Worachet Ratkasemsak
{"title":"Synthesis of zircon pigments from rice husk ash and their performance in ceramic glaze","authors":"N. Yongvanich, Peerapat Soysom, Worachet Ratkasemsak","doi":"10.55713/jmmm.v33i1.1593","DOIUrl":null,"url":null,"abstract":"ZrSiO4-based pigments have been known to be very stable in ceramic glazes but require a high firing temperature required for phase formation. This study examined the feasibility of using rice husk waste as a substitute for crystalline SiO2. The amorphous form of silica with some impurities was obtained by calcining the rice husk at 800℃. The general chemical formula were (Zr0.9M0.1)SiO4, where M = V, Pr, Fe and Cr. The solid-state processing was achieved by firing at 1300℃ for 12 h with NaF (5 wt%). X-ray Diffraction revealed a lower relative fraction between ZrO2 (secondary phase) and ZrSiO4 in the RHA systems compared to the oxide system for all dopants. Amorphousness of RHA did help enhance phase formability. The particle sizes were in the 3 µm to 5 µm range. Elemental analysis revealed some areas with intense signals of zirconium, indicating unreacted ZrO2 particles. Colorations appeared to be blue, yellow, brown and green for dopants of V, Pr, Fe and Cr, respectively. Technological performance was tested in a practical ceramic glaze and frequently used raw materials fired at its maturation point. The results of this study hold huge potential for using rice husks for sustainable manufacturing of pigments as green products.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"70 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i1.1593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ZrSiO4-based pigments have been known to be very stable in ceramic glazes but require a high firing temperature required for phase formation. This study examined the feasibility of using rice husk waste as a substitute for crystalline SiO2. The amorphous form of silica with some impurities was obtained by calcining the rice husk at 800℃. The general chemical formula were (Zr0.9M0.1)SiO4, where M = V, Pr, Fe and Cr. The solid-state processing was achieved by firing at 1300℃ for 12 h with NaF (5 wt%). X-ray Diffraction revealed a lower relative fraction between ZrO2 (secondary phase) and ZrSiO4 in the RHA systems compared to the oxide system for all dopants. Amorphousness of RHA did help enhance phase formability. The particle sizes were in the 3 µm to 5 µm range. Elemental analysis revealed some areas with intense signals of zirconium, indicating unreacted ZrO2 particles. Colorations appeared to be blue, yellow, brown and green for dopants of V, Pr, Fe and Cr, respectively. Technological performance was tested in a practical ceramic glaze and frequently used raw materials fired at its maturation point. The results of this study hold huge potential for using rice husks for sustainable manufacturing of pigments as green products.
稻壳灰合成锆英石颜料及其在陶瓷釉中的性能
众所周知,zrsio4基颜料在陶瓷釉中非常稳定,但需要较高的烧成温度才能形成相。本研究考察了利用稻壳废料代替结晶SiO2的可行性。将稻壳在800℃下煅烧得到含杂质的无定形二氧化硅。一般化学式为(Zr0.9M0.1)SiO4,其中M = V, Pr, Fe和Cr。采用NaF (5wt %)在1300℃下烧制12 h,实现固态加工。x射线衍射显示,与所有掺杂剂的氧化物体系相比,RHA体系中ZrO2(二次相)和ZrSiO4的相对分数较低。RHA的非晶性确实有助于提高相的成形性。粒径范围为3µm ~ 5µm。元素分析显示,一些区域有强烈的锆信号,表明未反应的ZrO2颗粒。V、Pr、Fe和Cr的掺杂剂分别呈现蓝色、黄色、棕色和绿色。在实际陶瓷釉料和熟化常用原料中进行了工艺性能测试。这项研究的结果为利用稻壳作为绿色产品可持续生产颜料提供了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信