Dynamic Behavior of Li in Solid-State Li-Ion Batteries Studied using MeV Ion Beam Analysis Techniques

Q4 Energy
K. Morita, B. Tsuchiya
{"title":"Dynamic Behavior of Li in Solid-State Li-Ion Batteries Studied using MeV Ion Beam Analysis Techniques","authors":"K. Morita, B. Tsuchiya","doi":"10.21926/jept.2102029","DOIUrl":null,"url":null,"abstract":"In this review, various studies on the Li depth profiles of metal/electrolyte/metal capacitors and batteries of Au/LCO/LATP/Pt, LCO/LiPON/Si, and LMO/LiPON/NbO with different metal electrodes at both sides (by bias; LCO =LiCoO2, LATP =Li3.1Al0.86Ti1.14Ge1.27P1.73O12, LMO =LiMn2O4, NbO = Nb2O5) using the in-situ reflection ERD (ERD) technique with 9MeV O+4 ion beam and transmission ERD (TERD) technique with 5MeV He+2 ion beam, respectively, are described. For capacitors, the transport fraction of Li-ion in the electrolyte is less than unity. The Li atoms diffuse in the direction opposite to the ion. It has been shown that the batteries are rechargeable. On the other hand, it is observed that an anomalous over-charging takes place when the batteries are over-biased (Si/LiPON/LCO and LMO/LiPON/NbO), and strong reactions of Li with the metal electrodes take place under these conditions. The anomaly observed is explained in terms of the imbalance in the capacities of Li in anode and cathode, which can be attributed to the sizeable amounts of hydrogen present as an impurity during the fabrication of the battery. This is because hydrogen can potentially reduce the capacity of Li in both anode and cathode. The reactions of Li with metal electrodes are discussed in terms of the transport fraction of Li ions (less than unity) and the difference in the work functions of metal electrodes at both sides. Finally, it is noted that the removal of hydrogen in batteries can potentially improve safety, efficiency, and lifetime. These can be achieved by reducing the reaction of Li with metal electrodes. The recoil-scatter method in the TERD technique can measure the Li depth profile in the absence of background yields.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy Science and Power Generation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/jept.2102029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

In this review, various studies on the Li depth profiles of metal/electrolyte/metal capacitors and batteries of Au/LCO/LATP/Pt, LCO/LiPON/Si, and LMO/LiPON/NbO with different metal electrodes at both sides (by bias; LCO =LiCoO2, LATP =Li3.1Al0.86Ti1.14Ge1.27P1.73O12, LMO =LiMn2O4, NbO = Nb2O5) using the in-situ reflection ERD (ERD) technique with 9MeV O+4 ion beam and transmission ERD (TERD) technique with 5MeV He+2 ion beam, respectively, are described. For capacitors, the transport fraction of Li-ion in the electrolyte is less than unity. The Li atoms diffuse in the direction opposite to the ion. It has been shown that the batteries are rechargeable. On the other hand, it is observed that an anomalous over-charging takes place when the batteries are over-biased (Si/LiPON/LCO and LMO/LiPON/NbO), and strong reactions of Li with the metal electrodes take place under these conditions. The anomaly observed is explained in terms of the imbalance in the capacities of Li in anode and cathode, which can be attributed to the sizeable amounts of hydrogen present as an impurity during the fabrication of the battery. This is because hydrogen can potentially reduce the capacity of Li in both anode and cathode. The reactions of Li with metal electrodes are discussed in terms of the transport fraction of Li ions (less than unity) and the difference in the work functions of metal electrodes at both sides. Finally, it is noted that the removal of hydrogen in batteries can potentially improve safety, efficiency, and lifetime. These can be achieved by reducing the reaction of Li with metal electrodes. The recoil-scatter method in the TERD technique can measure the Li depth profile in the absence of background yields.
用MeV离子束分析技术研究固态锂离子电池中锂离子的动态行为
本文对Au/LCO/LATP/Pt、LCO/LiPON/Si、LMO/LiPON/NbO等金属/电解液/金属电容器和电池在不同金属电极两侧(偏置;描述了LCO =LiCoO2, LATP =Li3.1Al0.86Ti1.14Ge1.27P1.73O12, LMO =LiMn2O4, NbO = Nb2O5)在9MeV O+4离子束下的原位反射ERD (ERD)和5MeV He+2离子束下的透射ERD (TERD)。对于电容器,电解质中锂离子的输运分数小于1。Li原子以与离子相反的方向扩散。已经证明这些电池是可充电的。另一方面,当电池处于过偏置(Si/LiPON/LCO和LMO/LiPON/NbO)时,会发生异常过充电,并且在这些条件下会发生Li与金属电极的强烈反应。观察到的异常被解释为阳极和阴极中锂容量的不平衡,这可以归因于在电池制造过程中作为杂质存在的大量氢。这是因为氢可以潜在地降低锂在阳极和阴极的容量。从Li离子的输运分数(小于1)和两侧金属电极的功函数差异的角度讨论了Li与金属电极的反应。最后,需要指出的是,去除电池中的氢可以潜在地提高安全性、效率和使用寿命。这些可以通过减少锂与金属电极的反应来实现。TERD技术中的反冲散射法可以在没有背景产率的情况下测量Li深度剖面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nuclear Energy Science and Power Generation Technology
Journal of Nuclear Energy Science and Power Generation Technology Energy-Energy Engineering and Power Technology
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信