{"title":"Photo-physical properties of Pr (III) chelates of substituted nitrobenzoic acid and nitrophenols","authors":"Alok Vyas, Mahendra Vyas, M. S. Shekhawat","doi":"10.61343/jcm.v1i01.7","DOIUrl":null,"url":null,"abstract":"Electronic absorption and emission spectra were recorded for chelates of Pr (III) with 2-hydroxy-4-nirobenzoic acid, 3-hydroxy-4-nitrobenzoic acid, 4-hydroxy-3-nitrobenzoic acid, 4-methyl-2-nitrophenol, 4-chloro-2-nitrophenol and 5-fluoro-2-nitrophenol in various M: L stoichiometry and for different pH. Intensity and energy of intraconfigurational 4fn transitions have been determined from the absorption spectra. The spectroscopic parameters like Slater-Condon (Fk), Racah (Ek), Lande (ζ4f) and Judd-Oflet parameters Ωλ (λ=2, 4, 6) have been computed using statistical method like partial regression method. The Judd-Oflet intensity parameters and fluorescence spectra have been used to calculate radiative life time (τ) of two excited states 3P0 and 1D2. From the fluorescence spectra of the chelates, effective line width (Δλeff) spontaneous emission probability (A), fluorescence branching ratio (β) and stimulated emission cross section (σ) have been determined for three optical transition 3P0-3H4, 3P0-3H5 and 1D2-3H4. Spectroscopic and intensity parameters were studied with respect to the ligand field symmetry and degree of bond covalency.","PeriodicalId":37739,"journal":{"name":"Journal of Condensed Matter Nuclear Science","volume":"55 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Condensed Matter Nuclear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61343/jcm.v1i01.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic absorption and emission spectra were recorded for chelates of Pr (III) with 2-hydroxy-4-nirobenzoic acid, 3-hydroxy-4-nitrobenzoic acid, 4-hydroxy-3-nitrobenzoic acid, 4-methyl-2-nitrophenol, 4-chloro-2-nitrophenol and 5-fluoro-2-nitrophenol in various M: L stoichiometry and for different pH. Intensity and energy of intraconfigurational 4fn transitions have been determined from the absorption spectra. The spectroscopic parameters like Slater-Condon (Fk), Racah (Ek), Lande (ζ4f) and Judd-Oflet parameters Ωλ (λ=2, 4, 6) have been computed using statistical method like partial regression method. The Judd-Oflet intensity parameters and fluorescence spectra have been used to calculate radiative life time (τ) of two excited states 3P0 and 1D2. From the fluorescence spectra of the chelates, effective line width (Δλeff) spontaneous emission probability (A), fluorescence branching ratio (β) and stimulated emission cross section (σ) have been determined for three optical transition 3P0-3H4, 3P0-3H5 and 1D2-3H4. Spectroscopic and intensity parameters were studied with respect to the ligand field symmetry and degree of bond covalency.
期刊介绍:
The Journal of Condensed Matter Nuclear Science is an open-access electronic journal that accepts scientific papers of high quality concerned with subjects relating to nuclear processes in condensed matter. Papers may focus on the results of experimental studies, theoretical studies, or a combination of these. Topics to which the journal is addressed include:- Calorimetry, energy production in metal hydrides and deuterides; Correlations, or lack of correlations, between energy production and possible nuclear products Materials science issues that are important for the development of nuclear effects in condensed matter Electrochemical issues concerning loading, surface chemistry, resistance diagnostics and other issues concerning metal hydrides and metal deuterides Observations of nuclear products, charged particles, neutrons, tritium, X-ray and gamma emission in metal hydrides Production of new elements or isotopes in metal hydrides and metal deuterides; and modification of isotopic distributions Induced radioactivity in metal deuterides and metal hydrides Accelerator experiments on metal deuterides and metal hydrides Models for nuclear processes in the condensed matter.