The Picard group of vertex affinoids in the first Drinfeld covering

IF 0.6 3区 数学 Q3 MATHEMATICS
J. Taylor
{"title":"The Picard group of vertex affinoids in the first Drinfeld covering","authors":"J. Taylor","doi":"10.1017/S0305004123000221","DOIUrl":null,"url":null,"abstract":"Abstract Let F be a finite extension of \n${\\mathbb Q}_p$\n . Let \n$\\Omega$\n be the Drinfeld upper half plane, and \n$\\Sigma^1$\n the first Drinfeld covering of \n$\\Omega$\n . We study the affinoid open subset \n$\\Sigma^1_v$\n of \n$\\Sigma^1$\n above a vertex of the Bruhat–Tits tree for \n$\\text{GL}_2(F)$\n . Our main result is that \n$\\text{Pic}\\!\\left(\\Sigma^1_v\\right)[p] = 0$\n , which we establish by showing that \n$\\text{Pic}({\\mathbf Y})[p] = 0$\n for \n${\\mathbf Y}$\n the Deligne–Lusztig variety of \n$\\text{SL}_2\\!\\left({\\mathbb F}_q\\right)$\n . One formal consequence is a description of the representation \n$H^1_{{\\acute{\\text{e}}\\text{t}}}\\!\\left(\\Sigma^1_v, {\\mathbb Z}_p(1)\\right)$\n of \n$\\text{GL}_2(\\mathcal{O}_F)$\n as the p-adic completion of \n$\\mathcal{O}\\!\\left(\\Sigma^1_v\\right)^\\times$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"112 1","pages":"423 - 432"},"PeriodicalIF":0.6000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000221","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let F be a finite extension of ${\mathbb Q}_p$ . Let $\Omega$ be the Drinfeld upper half plane, and $\Sigma^1$ the first Drinfeld covering of $\Omega$ . We study the affinoid open subset $\Sigma^1_v$ of $\Sigma^1$ above a vertex of the Bruhat–Tits tree for $\text{GL}_2(F)$ . Our main result is that $\text{Pic}\!\left(\Sigma^1_v\right)[p] = 0$ , which we establish by showing that $\text{Pic}({\mathbf Y})[p] = 0$ for ${\mathbf Y}$ the Deligne–Lusztig variety of $\text{SL}_2\!\left({\mathbb F}_q\right)$ . One formal consequence is a description of the representation $H^1_{{\acute{\text{e}}\text{t}}}\!\left(\Sigma^1_v, {\mathbb Z}_p(1)\right)$ of $\text{GL}_2(\mathcal{O}_F)$ as the p-adic completion of $\mathcal{O}\!\left(\Sigma^1_v\right)^\times$ .
第一Drinfeld覆盖中的Picard顶点仿射群
设F是${\mathbb Q}_p$的有限扩展。设$\Omega$为德林菲尔德上半平面,$\Sigma^1$为$\Omega$的第一个德林菲尔德覆盖面。我们研究了$\text{GL}_2(F)$在Bruhat-Tits树的一个顶点上的$\Sigma^1$的仿射开子集$\Sigma^1_v$。我们的主要结果是$\text{Pic}\!\left(\Sigma^1_v\right)[p] = 0$,我们通过显示$\text{Pic}({\mathbf Y})[p] = 0$对于${\mathbf Y}$的delign - lusztig变种$\text{SL}_2\!\left({\mathbb F}_q\right)$来建立。一个形式化的结果是将$\text{GL}_2(\mathcal{O}_F)$的表示$H^1_{{\acute{\text{e}}\text{t}}}\!\left(\Sigma^1_v, {\mathbb Z}_p(1)\right)$描述为$\mathcal{O}\!\left(\Sigma^1_v\right)^\times$的p进补全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信