Amarendra Kumar, Kunal Kashyap, K. Liao, M. T. Hou, J. Yeh
{"title":"Super hydrophobic/super hydrophilic transparent nanostructured glass fabricated by wet etching","authors":"Amarendra Kumar, Kunal Kashyap, K. Liao, M. T. Hou, J. Yeh","doi":"10.1109/NEMS.2014.6908771","DOIUrl":null,"url":null,"abstract":"Glass nanostructures were fabricated by wet chemical etching instead of using the complicated nanolithography and expensive dry etching process. Super hydrophilic glass with contact angle of 1° was created using this nanostructure with 92% transparency. Self-assembled monolayer of Perfluorodecyl-trichlorosilane (FDTS) was used to further make the glass super hydrophobic with contact angle of 151° without affecting its transparency. Polysilicon layer of 300 nm was deposited on glass substrate first and nanostructures were fabricated in this layer by metal assisted wet chemical etching. Thermal oxidation converted the silicon nanostructure to silicon dioxide nanostructure. This technology is producible on mass scale and useful in preparation of anti-fogging and self-cleaning glass.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"63 1","pages":"113-116"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Glass nanostructures were fabricated by wet chemical etching instead of using the complicated nanolithography and expensive dry etching process. Super hydrophilic glass with contact angle of 1° was created using this nanostructure with 92% transparency. Self-assembled monolayer of Perfluorodecyl-trichlorosilane (FDTS) was used to further make the glass super hydrophobic with contact angle of 151° without affecting its transparency. Polysilicon layer of 300 nm was deposited on glass substrate first and nanostructures were fabricated in this layer by metal assisted wet chemical etching. Thermal oxidation converted the silicon nanostructure to silicon dioxide nanostructure. This technology is producible on mass scale and useful in preparation of anti-fogging and self-cleaning glass.