Non-causal versus causal qualitative modelling and simulation

L. Travé-Massuyès, K. Bousson, J. Evrard, F. Guerrin, B. Lucas, A. Missier, M. Tomasena, L. Zimmer
{"title":"Non-causal versus causal qualitative modelling and simulation","authors":"L. Travé-Massuyès, K. Bousson, J. Evrard, F. Guerrin, B. Lucas, A. Missier, M. Tomasena, L. Zimmer","doi":"10.1049/ISE.1993.0015","DOIUrl":null,"url":null,"abstract":"Qualitative models of dynamical systems fall into noncausal or causal approaches. The noncausal approach is widely used in part because traditional physics describes phenomena by means of symmetric functional relations. It supports the idea that causality can be ignored or inferred from the model itself. Nevertheless, when people explain how things work, they use causal relations. Representing causality explicitly makes it possible to take advantage of exogenous knowledge necessary for understanding the phenomena and supporting self-explanatory simulation. The basic concepts used in both approaches, in addition to the representation formalisms and algorithms, are discussed. >","PeriodicalId":55165,"journal":{"name":"Engineering Intelligent Systems for Electrical Engineering and Communications","volume":"86 1","pages":"159-182"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Intelligent Systems for Electrical Engineering and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ISE.1993.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Qualitative models of dynamical systems fall into noncausal or causal approaches. The noncausal approach is widely used in part because traditional physics describes phenomena by means of symmetric functional relations. It supports the idea that causality can be ignored or inferred from the model itself. Nevertheless, when people explain how things work, they use causal relations. Representing causality explicitly makes it possible to take advantage of exogenous knowledge necessary for understanding the phenomena and supporting self-explanatory simulation. The basic concepts used in both approaches, in addition to the representation formalisms and algorithms, are discussed. >
非因果对因果定性建模和模拟
动力系统的定性模型分为非因果方法和因果方法。非因果方法被广泛使用,部分原因是传统物理学通过对称函数关系来描述现象。它支持因果关系可以被忽略或从模型本身推断出来的观点。然而,当人们解释事物如何运作时,他们使用因果关系。明确地表示因果关系可以利用理解现象和支持自我解释模拟所必需的外生知识。讨论了两种方法中使用的基本概念,以及表示形式和算法。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信