A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions

IF 1.1 Q2 MATHEMATICS, APPLIED
Sanjit Kumar Mohanty, R. B. Dash
{"title":"A quadrature rule of Lobatto-Gaussian for numerical integration of analytic functions","authors":"Sanjit Kumar Mohanty, R. B. Dash","doi":"10.3934/naco.2021031","DOIUrl":null,"url":null,"abstract":"A novel quadrature rule is formed combining Lobatto six point transformed rule and Gauss-Legendre five point transformed rule each having precision nine. The mixed rule so formed is of precision eleven. Through asymptotic error estimation the novelty of the quadrature rule is justified. Some test integrals have been evaluated using the mixed rule and its constituents both in non-adaptive and adaptive modes. The results are found to be quite encouraging for the mixed rule which is in conformation with the theoretical prediction.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"5 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

A novel quadrature rule is formed combining Lobatto six point transformed rule and Gauss-Legendre five point transformed rule each having precision nine. The mixed rule so formed is of precision eleven. Through asymptotic error estimation the novelty of the quadrature rule is justified. Some test integrals have been evaluated using the mixed rule and its constituents both in non-adaptive and adaptive modes. The results are found to be quite encouraging for the mixed rule which is in conformation with the theoretical prediction.
解析函数数值积分的Lobatto-Gaussian求积分规则
结合Lobatto六点变换规则和gaas - legendre五点变换规则,形成了一种精度均为9的正交规则。这样形成的混合规则精度为11。通过渐近误差估计,证明了正交规则的新颖性。在非自适应和自适应模式下,利用混合规则及其组成部分对一些测试积分进行了求值。结果表明,混合规律与理论预测一致,令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信