Applications of dispersive sum rules: $ε$-expansion and holography

Dean Carmi, J. Penedones, Joao A. Silva, A. Zhiboedov
{"title":"Applications of dispersive sum rules: $ε$-expansion and holography","authors":"Dean Carmi, J. Penedones, Joao A. Silva, A. Zhiboedov","doi":"10.21468/SciPostPhys.10.6.145","DOIUrl":null,"url":null,"abstract":"We use Mellin space dispersion relations together with Polyakov conditions to derive a family of sum rules for Conformal Field Theories (CFTs). The defining property of these sum rules is suppression of the contribution of the double twist operators. Firstly, we apply these sum rules to the Wilson-Fisher model in $d=4-\\epsilon$ dimensions. We re-derive many of the known results to order $\\epsilon^4$ and we make new predictions. No assumption of analyticity down to spin $0$ was made. Secondly, we study holographic CFTs. We use dispersive sum rules to obtain tree-level and one-loop anomalous dimensions. Finally, we briefly discuss the contribution of heavy operators to the sum rules in UV complete holographic theories.","PeriodicalId":8443,"journal":{"name":"arXiv: High Energy Physics - Theory","volume":"158 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SciPostPhys.10.6.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

We use Mellin space dispersion relations together with Polyakov conditions to derive a family of sum rules for Conformal Field Theories (CFTs). The defining property of these sum rules is suppression of the contribution of the double twist operators. Firstly, we apply these sum rules to the Wilson-Fisher model in $d=4-\epsilon$ dimensions. We re-derive many of the known results to order $\epsilon^4$ and we make new predictions. No assumption of analyticity down to spin $0$ was made. Secondly, we study holographic CFTs. We use dispersive sum rules to obtain tree-level and one-loop anomalous dimensions. Finally, we briefly discuss the contribution of heavy operators to the sum rules in UV complete holographic theories.
色散和规则的应用:$ε$-展开和全息
利用Mellin空间色散关系和Polyakov条件,导出了共形场论的和规则族。这些和规则的定义性质是抑制双扭转算子的贡献。首先,我们将这些求和规则应用到$d=4- $ epsilon$维的Wilson-Fisher模型。我们重新推导了许多已知的结果阶$\ ε ^4$,并做出了新的预测。没有假设分析下降到旋转$0$。其次,我们研究了全息cft。我们使用弥散和规则来获得树级和单环异常维数。最后简要讨论了重算子对UV完全全息理论和规则的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信