CHEBYSHEV APPROXIMATION MULTIVARIABLE FUNCTIONS BY THE RATIONAL EXPRESSION WITH THE INTERPOLATION

IF 0.1
P. Malachivskyy, L. Melnychok, Y. Pizyur
{"title":"CHEBYSHEV APPROXIMATION MULTIVARIABLE FUNCTIONS BY THE RATIONAL EXPRESSION WITH THE INTERPOLATION","authors":"P. Malachivskyy, L. Melnychok, Y. Pizyur","doi":"10.17721/2706-9699.2022.2.09","DOIUrl":null,"url":null,"abstract":"A method for constructing the Chebyshev approximation by the rational expression of the multivariable functions with the interpolation is proposed. The method is based on the construction of the ultimate mean-power approximation by a rational expression with the interpolation condition in the norm of space $L_p$ at $p \\to \\infty$. To construct such an approximation, an iterative scheme based on the least squares method with two variable weight functions was used.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"41 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method for constructing the Chebyshev approximation by the rational expression of the multivariable functions with the interpolation is proposed. The method is based on the construction of the ultimate mean-power approximation by a rational expression with the interpolation condition in the norm of space $L_p$ at $p \to \infty$. To construct such an approximation, an iterative scheme based on the least squares method with two variable weight functions was used.
切比雪夫近似多变量函数的有理表达式与插值
提出了一种利用多变量函数的有理表达式和插值构造切比雪夫近似的方法。该方法基于在空间范数$L_p$ ($p \to \infty$)中具有插值条件的有理表达式构造最终平均-功率近似。为了构造这样的近似,采用了一种基于最小二乘法的具有两个可变权函数的迭代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信