On the exponential Diophantine equation (4m²+1)ˣ + (21m²-1)ʸ = (5m)ᶻ

IF 0.3 Q4 MATHEMATICS
N. Terai
{"title":"On the exponential Diophantine equation (4m²+1)ˣ + (21m²-1)ʸ = (5m)ᶻ","authors":"N. Terai","doi":"10.33039/ami.2020.01.003","DOIUrl":null,"url":null,"abstract":"Let m be a positive integer. Then we show that the exponential Diophantine equation (4m+1)+(21m−1) = (5m) has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"12 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2020.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

Let m be a positive integer. Then we show that the exponential Diophantine equation (4m+1)+(21m−1) = (5m) has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method.
指数丢番图方程(4m²+1)μ k + (21m²-1)↓= (5m)ᶻ
设m为正整数。然后证明了指数型丢芬图方程(4m+1)+(21m−1)= (5m)在某些条件下只有正整数解(x, y, z) =(1,1,2)。证明是基于初等方法和贝克方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信