Multiple Kernel Learning Using Sparse Representation

N. Klausner, M. Azimi-Sadjadi
{"title":"Multiple Kernel Learning Using Sparse Representation","authors":"N. Klausner, M. Azimi-Sadjadi","doi":"10.1109/ICMLA.2017.00-79","DOIUrl":null,"url":null,"abstract":"This paper introduces a kernel machine for multiclass discrimination where the scoring function for each class is constructed using a linear combination over a predefined diverse library of kernel functions. The scoring function is built using an expanded set of the kernel library hence increasing the number of degrees of freedom to analyze the information content of each data sample. To choose the smallest set of kernels that best match desirable first-order moment properties of the class-conditional distribution a regularized linear least-squares problem is solved. The proposed multi-kernel machine is then demonstrated and benchmarked against similar techniques which rely on the use of a single kernel using a satellite imagery dataset for the purposes of discriminating among several vegetation and soil types.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"78 1","pages":"695-700"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper introduces a kernel machine for multiclass discrimination where the scoring function for each class is constructed using a linear combination over a predefined diverse library of kernel functions. The scoring function is built using an expanded set of the kernel library hence increasing the number of degrees of freedom to analyze the information content of each data sample. To choose the smallest set of kernels that best match desirable first-order moment properties of the class-conditional distribution a regularized linear least-squares problem is solved. The proposed multi-kernel machine is then demonstrated and benchmarked against similar techniques which rely on the use of a single kernel using a satellite imagery dataset for the purposes of discriminating among several vegetation and soil types.
基于稀疏表示的多核学习
本文介绍了一种用于多类判别的核机,其中每个类的评分函数使用预定义的多种核函数库上的线性组合来构造。评分函数使用扩展的内核库集构建,从而增加了分析每个数据样本信息内容的自由度。为了选择最符合类条件分布一阶矩特性的最小核集,解决了一个正则化线性最小二乘问题。然后对所提出的多核机器进行了演示,并对类似的技术进行了基准测试,这些技术依赖于使用单个核,使用卫星图像数据集来区分几种植被和土壤类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信