A note on the orderability of Dehn fillings of the manifold v2503

K. Varvarezos
{"title":"A note on the orderability of Dehn fillings of the manifold v2503","authors":"K. Varvarezos","doi":"10.1142/s0218216520710029","DOIUrl":null,"url":null,"abstract":"We show that Dehn filling on the manifold $v2503$ results in a non-orderable space for all rational slopes in the interval $(-\\infty , -1)$. This is consistent with the L-space conjecture, which predicts that all fillings will result in a non-orderable space for this manifold.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218216520710029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that Dehn filling on the manifold $v2503$ results in a non-orderable space for all rational slopes in the interval $(-\infty , -1)$. This is consistent with the L-space conjecture, which predicts that all fillings will result in a non-orderable space for this manifold.
关于流形v2503的Dehn填充的有序性的注记
我们证明了流形$v2503$上的Dehn填充导致了区间$(-\infty , -1)$内所有有理斜率的非有序空间。这与l空间猜想是一致的,l空间猜想预测所有的填充都会导致这个流形的非有序空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信