RECONHECIMENTO DE CÉDULAS DO REAL A PARTIR DE IMAGENS USANDO CNN PARA AUXILIAR DEFICIENTES VISUAIS

Alisson Pereira Anjos, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri
{"title":"RECONHECIMENTO DE CÉDULAS DO REAL A PARTIR DE IMAGENS USANDO CNN PARA AUXILIAR DEFICIENTES VISUAIS","authors":"Alisson Pereira Anjos, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, Mário Augusto Pazoti, A. O. Artero, M. A. Piteri","doi":"10.5747/ce.2021.v13.n1.e352","DOIUrl":null,"url":null,"abstract":"Real Banknotes recognition through touch has always been a problem found by visually impaired. The advancement of technology makes it possible to solve this problem computationally. In this work, we present a method to perform Real Banknotes recognition from images using computational vision and artificial intelligence algorithms. The results show that computational cost and recognitionrate are acceptable for use in uncontrolled environments. The processing time for recognition of each Real banknote was 200 milliseconds, with an accuracy of 91.67%.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n1.e352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real Banknotes recognition through touch has always been a problem found by visually impaired. The advancement of technology makes it possible to solve this problem computationally. In this work, we present a method to perform Real Banknotes recognition from images using computational vision and artificial intelligence algorithms. The results show that computational cost and recognitionrate are acceptable for use in uncontrolled environments. The processing time for recognition of each Real banknote was 200 milliseconds, with an accuracy of 91.67%.
使用CNN从图像中识别真实的钞票,以帮助视障人士
通过触摸识别真钞一直是视障人士发现的一个问题。技术的进步使得用计算机解决这个问题成为可能。在这项工作中,我们提出了一种使用计算视觉和人工智能算法从图像中执行真实钞票识别的方法。结果表明,在非受控环境下,计算成本和识别率是可以接受的。每张真钞的识别处理时间为200毫秒,准确率为91.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信