Analysis of Lattice Constants and Error for The Hexagonal Crystal Structure of Silicon Dioxide Using The Cramer-Cohen Method

N. Kurniawati, D. Wardani, B. Hariyanto, N. Har, N. Darmawan, Irzaman
{"title":"Analysis of Lattice Constants and Error for The Hexagonal Crystal Structure of Silicon Dioxide Using The Cramer-Cohen Method","authors":"N. Kurniawati, D. Wardani, B. Hariyanto, N. Har, N. Darmawan, Irzaman","doi":"10.1088/1742-6596/2019/1/012071","DOIUrl":null,"url":null,"abstract":"Has successfully analyzed the lattice constants and the error of the hexagonal crystal structure of silicon dioxide (SiO2) using the Cramer-Cohen method. The peak data for the silicon dioxide material used are secondary data from the ICDD. The Cramer-Cohen method calculations show that the lattice constants are relatively the same as the secondary data from the ICDD, with an average error analysis value of 0,001531805%. This shows that the analysis of the lattice constant and the error of the hexagonal crystal structure of silicon dioxide (SiO2) using the Cramer-Cohen method is very accurate.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2019/1/012071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Has successfully analyzed the lattice constants and the error of the hexagonal crystal structure of silicon dioxide (SiO2) using the Cramer-Cohen method. The peak data for the silicon dioxide material used are secondary data from the ICDD. The Cramer-Cohen method calculations show that the lattice constants are relatively the same as the secondary data from the ICDD, with an average error analysis value of 0,001531805%. This shows that the analysis of the lattice constant and the error of the hexagonal crystal structure of silicon dioxide (SiO2) using the Cramer-Cohen method is very accurate.
用Cramer-Cohen方法分析二氧化硅六方晶体结构的晶格常数和误差
用Cramer-Cohen方法成功地分析了二氧化硅(SiO2)六方晶体结构的晶格常数和误差。所用二氧化硅材料的峰值数据是来自ICDD的二次数据。Cramer-Cohen方法计算表明,晶格常数与ICDD的二次数据相对一致,平均误差分析值为0,001531805%。这说明用Cramer-Cohen方法分析二氧化硅(SiO2)六方晶体结构的晶格常数和误差是非常准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信