A conditional random field approach for face identification in broadcast news using overlaid text

G. Paul, Khoury Elie, Meignier Sylvain, Odobez Jean-Marc, D. Paul
{"title":"A conditional random field approach for face identification in broadcast news using overlaid text","authors":"G. Paul, Khoury Elie, Meignier Sylvain, Odobez Jean-Marc, D. Paul","doi":"10.1109/ICIP.2014.7025063","DOIUrl":null,"url":null,"abstract":"We investigate the problem of face identification in broadcast programs where people names are obtained from text overlays automatically processed with Optical Character Recognition (OCR) and further linked to the faces throughout the video. To solve the face-name association and propagation, we propose a novel approach that combines the positive effects of two Conditional Random Field (CRF) models: a CRF for person diarization (joint temporal segmentation and association of voices and faces) that benefit from the combination of multiple cues including as main contributions the use of identification sources (OCR appearances) and recurrent local face visual background (LFB) playing the role of a namedness feature; a second CRF for the joint identification of the person clusters that improves identification performance thanks to the use of further diarization statistics. Experiments conducted on a recent and substantial public dataset of 7 different shows demonstrate the interest and complementarity of the different modeling steps and information sources, leading to state of the art results.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"28 1","pages":"318-322"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We investigate the problem of face identification in broadcast programs where people names are obtained from text overlays automatically processed with Optical Character Recognition (OCR) and further linked to the faces throughout the video. To solve the face-name association and propagation, we propose a novel approach that combines the positive effects of two Conditional Random Field (CRF) models: a CRF for person diarization (joint temporal segmentation and association of voices and faces) that benefit from the combination of multiple cues including as main contributions the use of identification sources (OCR appearances) and recurrent local face visual background (LFB) playing the role of a namedness feature; a second CRF for the joint identification of the person clusters that improves identification performance thanks to the use of further diarization statistics. Experiments conducted on a recent and substantial public dataset of 7 different shows demonstrate the interest and complementarity of the different modeling steps and information sources, leading to state of the art results.
基于覆盖文本的广播新闻人脸识别的条件随机场方法
我们研究了广播节目中的人脸识别问题,其中人名是从经过光学字符识别(OCR)自动处理的文本叠加中获得的,并进一步与整个视频中的人脸相关联。为了解决人脸-名字的关联和传播问题,我们提出了一种结合两种条件随机场(CRF)模型的积极作用的新方法:一个用于人的特征化的条件随机场(CRF)(联合时间分割和声音和面孔的关联),它受益于多种线索的组合,包括主要贡献的识别源(OCR出现)的使用和重复的局部人脸视觉背景(LFB)的作用。第二个CRF用于人员聚类的联合识别,由于使用了进一步的分类统计,提高了识别性能。在最近的7个不同节目的大量公共数据集上进行的实验表明,不同建模步骤和信息源的兴趣和互补性,导致了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信