Implementation of an Automated Fire Support Planner

Byron R. Harder, Imre Balogh, C. Darken
{"title":"Implementation of an Automated Fire Support Planner","authors":"Byron R. Harder, Imre Balogh, C. Darken","doi":"10.1609/aiide.v12i1.12867","DOIUrl":null,"url":null,"abstract":"\n \n Although the employment of fire support is a staple of modern military doctrine, today's constructive combat simulations depend on meticulous human input to generate any appropriate fire support plans. This status quo can be improved through AI techniques. We implement models of tactical risk, reduction of risk, and suppression effects in a representative combat simulation, as well as a greedy fire support planning algorithm that leverages these concepts. The algorithm is theoretically non-optimal, but testing shows that the resulting fire support plans are effective at improving simulated combat results and have some realistic emergent properties. The practical running time of the planner is less than 20 seconds for a company-sized unit, including navigation graph setup. The planner's best-first approach scales naturally in more time-constrained environments.\n \n","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"65 1","pages":"51-57"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v12i1.12867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Although the employment of fire support is a staple of modern military doctrine, today's constructive combat simulations depend on meticulous human input to generate any appropriate fire support plans. This status quo can be improved through AI techniques. We implement models of tactical risk, reduction of risk, and suppression effects in a representative combat simulation, as well as a greedy fire support planning algorithm that leverages these concepts. The algorithm is theoretically non-optimal, but testing shows that the resulting fire support plans are effective at improving simulated combat results and have some realistic emergent properties. The practical running time of the planner is less than 20 seconds for a company-sized unit, including navigation graph setup. The planner's best-first approach scales naturally in more time-constrained environments.
自动火力支援计划的实施
尽管火力支援的使用是现代军事理论的主要内容,但今天的建设性战斗模拟依赖于细致的人力投入来生成任何适当的火力支援计划。这种现状可以通过人工智能技术得到改善。我们在一个典型的战斗模拟中实现了战术风险、降低风险和抑制效果的模型,以及利用这些概念的贪婪火力支援规划算法。该算法在理论上是非最优的,但试验表明,所得到的火力支援方案在提高模拟作战效果方面是有效的,并且具有一定的现实应急特性。规划器的实际运行时间是少于20秒的公司规模的单位,包括导航图设置。计划者的最佳优先方法在时间限制较多的环境中自然适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信