Growth of Sobolev norms and loss of regularity in transport equations

Gianluca Crippa, T. Elgindi, Gautam Iyer, A. Mazzucato
{"title":"Growth of Sobolev norms and loss of regularity in transport equations","authors":"Gianluca Crippa, T. Elgindi, Gautam Iyer, A. Mazzucato","doi":"10.1098/rsta.2021.0024","DOIUrl":null,"url":null,"abstract":"We consider transport of a passive scalar advected by an irregular divergence-free vector field. Given any non-constant initial data ρ¯∈Hloc1(Rd), d≥2, we construct a divergence-free advecting velocity field v (depending on ρ¯) for which the unique weak solution to the transport equation does not belong to Hloc1(Rd) for any positive time. The velocity field v is smooth, except at one point, controlled uniformly in time, and belongs to almost every Sobolev space Ws,p that does not embed into the Lipschitz class. The velocity field v is constructed by pulling back and rescaling a sequence of sine/cosine shear flows on the torus that depends on the initial data. This loss of regularity result complements that in Ann. PDE, 5(1):Paper No. 9, 19, 2019. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"380 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We consider transport of a passive scalar advected by an irregular divergence-free vector field. Given any non-constant initial data ρ¯∈Hloc1(Rd), d≥2, we construct a divergence-free advecting velocity field v (depending on ρ¯) for which the unique weak solution to the transport equation does not belong to Hloc1(Rd) for any positive time. The velocity field v is smooth, except at one point, controlled uniformly in time, and belongs to almost every Sobolev space Ws,p that does not embed into the Lipschitz class. The velocity field v is constructed by pulling back and rescaling a sequence of sine/cosine shear flows on the torus that depends on the initial data. This loss of regularity result complements that in Ann. PDE, 5(1):Paper No. 9, 19, 2019. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’.
输运方程中Sobolev范数的增长和正则性的丧失
考虑无散度的不规则矢量场对无源标量平流的输运。给定任意非常数初始数据ρ¯∈Hloc1(Rd), d≥2,我们构造了一个无散度的平流速度场v(取决于ρ¯),其输运方程的唯一弱解在任何正时间都不属于Hloc1(Rd)。速度场v是光滑的,除一点外,在时间上是均匀控制的,并且几乎属于不嵌入到Lipschitz类中的每一个Sobolev空间Ws,p。速度场v是通过拉回和重新缩放依赖于初始数据的环面上的正弦/余弦剪切流序列来构建的。这种丧失规律性的结果补充了在Ann中的结果。生物工程学报,5(1):论文No. 9, 2019。本文是主题问题“物理流体动力学中的数学问题(第一部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信