A Diversity Index Model based on Spatial Analysis to Estimate High Conservation Value in a Mining Area

IF 1.7 Q2 FORESTRY
S. Larekeng, M. Nursaputra, N. Nasri, Andi Siady Hamzah, A. Mustari, A. Arif, A. P. Ambodo, Y. Lawang, Andri Ardiansyah
{"title":"A Diversity Index Model based on Spatial Analysis to Estimate High Conservation Value in a Mining Area","authors":"S. Larekeng, M. Nursaputra, N. Nasri, Andi Siady Hamzah, A. Mustari, A. Arif, A. P. Ambodo, Y. Lawang, Andri Ardiansyah","doi":"10.24259/fs.v6i1.12919","DOIUrl":null,"url":null,"abstract":"Large scale land-based investments have a significant impact on natural resources and environmental conditions. It is necessary to protect areas of high conservation value (HCV) within land management investments, such as the mining sector, to minimise this impact. The existence of high conservation value sites in locations with activities related to the mining sector is intended to maintain the ecological and conservation value of a mining investment area. We demonstrate a model that can identify potential high conservation value sites in mining areas using remote sensing data and spatial analysis compiled with field observation data. The research was conducted in one of the largest nickel mining areas (71,047 ha) in South Sulawesi, Indonesia. We mapped vegetation density using the normalized difference vegetation index (NDVI), calculated from Sentinel-2 imagery. We also collected biodiversity data in predetermined inventory sampling plots, which we then used to estimate species richness using the Shannon-Wiener diversity index. Using a linear regression model to compare the normalized difference vegetation index value in each sampling plot with the biodiversity value of flora and fauna, we then estimated biodiversity distribution patterns for the entire study area. We found that potential high conservation value areas (areas likely to have high biodiversity based on our regression model) covered 40,000 ha, more than half of the total concession area.","PeriodicalId":43213,"journal":{"name":"Forest and Society","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24259/fs.v6i1.12919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1

Abstract

Large scale land-based investments have a significant impact on natural resources and environmental conditions. It is necessary to protect areas of high conservation value (HCV) within land management investments, such as the mining sector, to minimise this impact. The existence of high conservation value sites in locations with activities related to the mining sector is intended to maintain the ecological and conservation value of a mining investment area. We demonstrate a model that can identify potential high conservation value sites in mining areas using remote sensing data and spatial analysis compiled with field observation data. The research was conducted in one of the largest nickel mining areas (71,047 ha) in South Sulawesi, Indonesia. We mapped vegetation density using the normalized difference vegetation index (NDVI), calculated from Sentinel-2 imagery. We also collected biodiversity data in predetermined inventory sampling plots, which we then used to estimate species richness using the Shannon-Wiener diversity index. Using a linear regression model to compare the normalized difference vegetation index value in each sampling plot with the biodiversity value of flora and fauna, we then estimated biodiversity distribution patterns for the entire study area. We found that potential high conservation value areas (areas likely to have high biodiversity based on our regression model) covered 40,000 ha, more than half of the total concession area.
基于空间分析的矿区高保护价值评价多样性指数模型
大规模陆上投资对自然资源和环境条件有重大影响。有必要在土地管理投资范围内保护具有高保护价值(HCV)的地区,如采矿业,以尽量减少这种影响。在与采矿部门有关的活动地点存在高保护价值的地点是为了维持采矿投资区的生态和保护价值。我们展示了一个利用遥感数据和野外观测数据编制的空间分析来识别矿区潜在高保护价值遗址的模型。这项研究是在印度尼西亚南苏拉威西最大的镍矿区之一(71,047公顷)进行的。我们利用Sentinel-2图像计算的归一化植被指数(NDVI)绘制了植被密度图。我们还收集了预先确定的库存样地的生物多样性数据,然后使用Shannon-Wiener多样性指数来估计物种丰富度。利用线性回归模型将各样地归一化植被指数与动植物多样性值进行比较,估计整个研究区生物多样性的分布格局。我们发现潜在的高保护价值区域(根据我们的回归模型可能具有高生物多样性的区域)覆盖了40,000公顷,占总特许权面积的一半以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forest and Society
Forest and Society FORESTRY-
CiteScore
4.60
自引率
35.30%
发文量
37
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信