{"title":"Impact of media coverage on a fractional-order SIR epidemic model","authors":"C. Maji","doi":"10.1142/s1793962322500374","DOIUrl":null,"url":null,"abstract":"In this work, we formulated and analyzed a fractional-order epidemic model of infectious disease (such as SARS, 2019-nCoV and COVID-19) concerning media effect. The model is based on classical susceptible-infected-recovered (SIR) model. Basic properties regarding positivity, boundedness and non-negative solutions are discussed. Basic reproduction number [Formula: see text] of the system has been calculated using next-generation matrix method and it is seen that the disease-free equilibrium is locally as well as globally asymptotically stable if [Formula: see text], otherwise unstable. The existence of endemic equilibrium point is established using the Lambert W function. The condition for global stability has been derived. Numerical simulation suggests that fractional order and media have a large effect on our system dynamics. When media impact is stronger enough, our fractional-order system stabilizes the oscillation.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"36 1","pages":"2250037:1-2250037:17"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Model. Simul. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962322500374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we formulated and analyzed a fractional-order epidemic model of infectious disease (such as SARS, 2019-nCoV and COVID-19) concerning media effect. The model is based on classical susceptible-infected-recovered (SIR) model. Basic properties regarding positivity, boundedness and non-negative solutions are discussed. Basic reproduction number [Formula: see text] of the system has been calculated using next-generation matrix method and it is seen that the disease-free equilibrium is locally as well as globally asymptotically stable if [Formula: see text], otherwise unstable. The existence of endemic equilibrium point is established using the Lambert W function. The condition for global stability has been derived. Numerical simulation suggests that fractional order and media have a large effect on our system dynamics. When media impact is stronger enough, our fractional-order system stabilizes the oscillation.