M. Seleznev, Y. Nikulin, Y. Khivintsev, S. Vysotskii, A. Kozhevnikov, V. Sakharov, G. Dudko, Y. Filimonov
{"title":"Influence of parametric instability on spin pumping by dipole-exchange magnetostatic surface waves in YIG–Pt structures","authors":"M. Seleznev, Y. Nikulin, Y. Khivintsev, S. Vysotskii, A. Kozhevnikov, V. Sakharov, G. Dudko, Y. Filimonov","doi":"10.18500/0869-6632-003032","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to study the influence of four-magnon (4M) parametric instability on spin pumping by dipole-exchange magnetostatic surface waves (MSSW) with the help of the inverse spin Hall effect (ISHE) in structures based on yttrium-iron garnet (YIG) and platinum (Pt). Methods. The experiments were carried out using the delay line structures based on YIG(900 nm)/Pt(9 nm) where electromotive force (EMF) induced by ISHE demonstrates a growth at the frequencies of the resonant interaction between MSSW and volume exchange modes. The frequency dependencies of the amplitude and phase for the delay line structure and EMF (𝑈(𝑓)) from the platinum layer were studied as a function of the MSSW power. Results. It was shown that the resonant EMF growth at the frequencies of dipole-exchange resonances is caused by the presence of Van Hove singularities in the density of states for spin waves at such frequencies that leads to an increase in the efficiency of electron-magnon scattering at the YIG–Pt interface. A growth in MSSW power beyond the threshold of 4M instability development results in a “smoothing” of resonant particularities in the EMF frequency dependence 𝑈(𝑓) that can be explained by decreasing efficiency of spin pumping due to destruction of dipole-exchange resonances and related singularities in the density of states of spin waves. Conclusion. Obtained results may be of interest for the development of highly sensitive spin current detectors, as well as for the implementation of spintronic devices.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"133 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work is to study the influence of four-magnon (4M) parametric instability on spin pumping by dipole-exchange magnetostatic surface waves (MSSW) with the help of the inverse spin Hall effect (ISHE) in structures based on yttrium-iron garnet (YIG) and platinum (Pt). Methods. The experiments were carried out using the delay line structures based on YIG(900 nm)/Pt(9 nm) where electromotive force (EMF) induced by ISHE demonstrates a growth at the frequencies of the resonant interaction between MSSW and volume exchange modes. The frequency dependencies of the amplitude and phase for the delay line structure and EMF (𝑈(𝑓)) from the platinum layer were studied as a function of the MSSW power. Results. It was shown that the resonant EMF growth at the frequencies of dipole-exchange resonances is caused by the presence of Van Hove singularities in the density of states for spin waves at such frequencies that leads to an increase in the efficiency of electron-magnon scattering at the YIG–Pt interface. A growth in MSSW power beyond the threshold of 4M instability development results in a “smoothing” of resonant particularities in the EMF frequency dependence 𝑈(𝑓) that can be explained by decreasing efficiency of spin pumping due to destruction of dipole-exchange resonances and related singularities in the density of states of spin waves. Conclusion. Obtained results may be of interest for the development of highly sensitive spin current detectors, as well as for the implementation of spintronic devices.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.