{"title":"A methodology to predict the gas permeability parameters of tight reservoirs from nitrogen sorption isotherms and mercury porosimetry curves","authors":"C. Tsakiroglou, A. Hinai, R. Rezaee","doi":"10.2516/OGST/2021013","DOIUrl":null,"url":null,"abstract":"A methodology is suggested for the explicit computation of the absolute permeability and Knudsen diffusion coefficient of tight rocks (shales) from pore structure properties. The pore space is regarded as a pore-and-throat network quantified by the statistical moments of bimodal pore and throat size distributions, pore shape factors, and pore accessibility function. With the aid of percolation theory, analytic equations are developed to express the nitrogen (N2 ) adsorption/desorption isotherms and mercury (Hg) intrusion curve as functions of all pertinent pore structure parameters. A multistep procedure is adopted for the successive estimation of each set of parameters by the inverse modeling of N2 adsorption–desorption isotherms, and Hg intrusion curve. With the aid of critical path analysis of percolation theory, the absolute permeability and Knudsen diffusion coefficient are computed as functions of estimated pore network properties. Application of the methodology to the datasets of several shale samples enables us to evaluate the predictability of the approach.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":"23 1","pages":"32"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2021013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
A methodology is suggested for the explicit computation of the absolute permeability and Knudsen diffusion coefficient of tight rocks (shales) from pore structure properties. The pore space is regarded as a pore-and-throat network quantified by the statistical moments of bimodal pore and throat size distributions, pore shape factors, and pore accessibility function. With the aid of percolation theory, analytic equations are developed to express the nitrogen (N2 ) adsorption/desorption isotherms and mercury (Hg) intrusion curve as functions of all pertinent pore structure parameters. A multistep procedure is adopted for the successive estimation of each set of parameters by the inverse modeling of N2 adsorption–desorption isotherms, and Hg intrusion curve. With the aid of critical path analysis of percolation theory, the absolute permeability and Knudsen diffusion coefficient are computed as functions of estimated pore network properties. Application of the methodology to the datasets of several shale samples enables us to evaluate the predictability of the approach.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.