Activity Recognition Using First-Person-View Cameras Based on Sparse Optical Flows

Peng Yua Kao, Yan-Jing Lei, Chia-Hao Chang, Chu-Song Chen, Ming-Sui Lee, Y. Hung
{"title":"Activity Recognition Using First-Person-View Cameras Based on Sparse Optical Flows","authors":"Peng Yua Kao, Yan-Jing Lei, Chia-Hao Chang, Chu-Song Chen, Ming-Sui Lee, Y. Hung","doi":"10.1109/ICPR48806.2021.9412330","DOIUrl":null,"url":null,"abstract":"First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32 × 32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"28 6 1","pages":"81-86"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32 × 32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.
基于稀疏光流的第一人称视角相机活动识别
第一人称视角(FPV)摄像机在日常生活中被广泛用于记录活动和运动。在本文中,我们提出了一种简洁且鲁棒的3D卷积神经网络(CNN)架构以及用于FPV视频活动识别的集成学习网络。本文提出的3D CNN是在低分辨率(32 × 32)稀疏光流上训练的,使用的是由日常活动组成的FPV视频数据集。根据实验结果,我们的网络达到了90%的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信