Optimal BV estimates for a discontinuous Galerkin method for linear elasticity

A. Lew, P. Neff, D. Sulsky, M. Ortiz
{"title":"Optimal BV estimates for a discontinuous Galerkin method for linear elasticity","authors":"A. Lew, P. Neff, D. Sulsky, M. Ortiz","doi":"10.1155/S1687120004020052","DOIUrl":null,"url":null,"abstract":"We analyze a discontinuous Galerkin method for linear elasticity. The discrete formulation derives from the Hellinger-Reissner variational principle with the addition of stabilization terms analogous to those previously considered by others for the Navier-Stokes equations and a scalar Poisson equation. For our formulation, we first obtain convergence in a mesh-dependent norm and in the natural mesh-independent BD norm. We then prove a generalization of Korn's second inequality which allows us to strengthen our results to an optimal, mesh-independent BV estimate for the error.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"425 1","pages":"73-106"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/S1687120004020052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

We analyze a discontinuous Galerkin method for linear elasticity. The discrete formulation derives from the Hellinger-Reissner variational principle with the addition of stabilization terms analogous to those previously considered by others for the Navier-Stokes equations and a scalar Poisson equation. For our formulation, we first obtain convergence in a mesh-dependent norm and in the natural mesh-independent BD norm. We then prove a generalization of Korn's second inequality which allows us to strengthen our results to an optimal, mesh-independent BV estimate for the error.
线性弹性不连续Galerkin方法的最优BV估计
分析了线性弹性的不连续伽辽金方法。离散公式来源于Hellinger-Reissner变分原理,并添加了类似于其他人先前对Navier-Stokes方程和标量泊松方程所考虑的稳定化项。对于我们的公式,我们首先获得了网格相关范数和自然网格无关BD范数的收敛性。然后,我们证明了Korn第二不等式的推广,这使我们能够将结果加强到最优的,与网格无关的误差BV估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信