Conformal Killing Vector Fields of Riemannian Manifolds

Md Shapan Miah, Khondokar M. Ahmed
{"title":"Conformal Killing Vector Fields of Riemannian Manifolds","authors":"Md Shapan Miah, Khondokar M. Ahmed","doi":"10.3329/dujs.v70i2.62601","DOIUrl":null,"url":null,"abstract":"The main aim of this article to study about vector fields of manifold and how these vector fields will be Killing and Conformal Killing vector fields. Conformal transformation of Weyl rescaling which is conformally related to metrices from g to g, Levi-Civita connection Δ , Lie derivative, torsion with tensor concept of manifold N in a multi-linear map have been treated in this paper. Finally, we have been proved Example 3.02and established the theorem 6.02 on Conformal Killing vector fields.\nDhaka Univ. J. Sci. 70(2): 18-22, 2022 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v70i2.62601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main aim of this article to study about vector fields of manifold and how these vector fields will be Killing and Conformal Killing vector fields. Conformal transformation of Weyl rescaling which is conformally related to metrices from g to g, Levi-Civita connection Δ , Lie derivative, torsion with tensor concept of manifold N in a multi-linear map have been treated in this paper. Finally, we have been proved Example 3.02and established the theorem 6.02 on Conformal Killing vector fields. Dhaka Univ. J. Sci. 70(2): 18-22, 2022 (July)
黎曼流形的共形杀伤向量场
本文的主要目的是研究流形的向量场,以及这些向量场如何成为消杀和保形消杀向量场。本文讨论了与从g到g的度量共形相关的Weyl重标度的共形变换、Levi-Civita连接Δ、Lie导数、多线性映射中流形N的张量概念的扭力。最后,我们证明了例3.02,并建立了保形杀伤向量场的定理6.02。达卡大学学报(自然科学版),70(2):18-22,2022 (7)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信