On characterizations of solution sets of interval-valued quasiconvex programming problems

Shashi Kant Mishra, Sanjeeva Kumar Singh, Mohd Hassan
{"title":"On characterizations of solution sets of interval-valued quasiconvex programming problems","authors":"Shashi Kant Mishra, Sanjeeva Kumar Singh, Mohd Hassan","doi":"10.1051/ro/2023124","DOIUrl":null,"url":null,"abstract":"In this article, we study several characterizations of solution sets of LU-quasiconvex interval-valued function. Firstly, we provide Gordan’s theorem of the alternative of interval-valued linear system. As a consequence of this theorem, we find the normalized gradient of the interval-valued function is constant over the solution set when its gradient is not zero. Further, we discuss Lagrange multiplier characterizations of solution sets of LU-quasiconvex interval-valued function and provide optimality conditions of interval-valued optimization problem under the generalized Mangasarian-Fromovitz constraint qualifications. We provide illustrative examples in the support of our theory.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":"6 1","pages":"2585-2600"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study several characterizations of solution sets of LU-quasiconvex interval-valued function. Firstly, we provide Gordan’s theorem of the alternative of interval-valued linear system. As a consequence of this theorem, we find the normalized gradient of the interval-valued function is constant over the solution set when its gradient is not zero. Further, we discuss Lagrange multiplier characterizations of solution sets of LU-quasiconvex interval-valued function and provide optimality conditions of interval-valued optimization problem under the generalized Mangasarian-Fromovitz constraint qualifications. We provide illustrative examples in the support of our theory.
区间值拟凸规划问题解集的刻画
本文研究了lu -拟凸区间值函数解集的几个刻画。首先,给出了区间值线性系统的可选性的Gordan定理。根据这一定理,我们发现当区间值函数的梯度不为零时,它的归一化梯度在解集上是常数。进一步讨论了lu -拟凸区间值函数解集的拉格朗日乘子刻画,给出了广义Mangasarian-Fromovitz约束条件下区间值优化问题的最优性条件。我们提供了说明性的例子来支持我们的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信