Особенности возбуждения частицы в одноуровневой квантовой яме предельно коротким аттосекундным импульсом

Ростислав Михайлович Архипов, Михаил Викторович Архипов, П. А. Белов, А. В. Пахомов, Николай Николаевич Розанов
{"title":"Особенности возбуждения частицы в одноуровневой квантовой яме предельно коротким аттосекундным импульсом","authors":"Ростислав Михайлович Архипов, Михаил Викторович Архипов, П. А. Белов, А. В. Пахомов, Николай Николаевич Розанов","doi":"10.21883/os.2023.01.54540.4191-22","DOIUrl":null,"url":null,"abstract":"Using the solution of the time Schrödinger equation, the features of the excitation of a bound state of a particle in a one-dimensional rectangular quantum well of small depth by an extremely short light pulse are studied. The case of a shallow well with only one energy level is considered. In this case, the system is excited by an attosecond pulse whose duration is shorter than the characteristic time associated with the energy of the bound state of the particle in the well. It is shown that in this case the population of the bound state and the ionization probability are determined by the ratio of the electric area of the pulse to its atomic measure, which is inversely proportional to the well width. The calculation results showed that unipolar subcycle pulses with nonzero electric area can excite the system faster and more efficiently than bipolar pulses with zero area. The possibility of using unipolar gamma-ray pulses of zeptosecond duration for deuteron excitation is discussed, and numerical estimates of the required duration and electric area of the pulse are given.","PeriodicalId":24059,"journal":{"name":"Оптика и спектроскопия","volume":"102 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Оптика и спектроскопия","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/os.2023.01.54540.4191-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the solution of the time Schrödinger equation, the features of the excitation of a bound state of a particle in a one-dimensional rectangular quantum well of small depth by an extremely short light pulse are studied. The case of a shallow well with only one energy level is considered. In this case, the system is excited by an attosecond pulse whose duration is shorter than the characteristic time associated with the energy of the bound state of the particle in the well. It is shown that in this case the population of the bound state and the ionization probability are determined by the ratio of the electric area of the pulse to its atomic measure, which is inversely proportional to the well width. The calculation results showed that unipolar subcycle pulses with nonzero electric area can excite the system faster and more efficiently than bipolar pulses with zero area. The possibility of using unipolar gamma-ray pulses of zeptosecond duration for deuteron excitation is discussed, and numerical estimates of the required duration and electric area of the pulse are given.
单层量子坑中粒子刺激的特征,最小的atto秒脉冲
利用时间Schrödinger方程的解,研究了极短光脉冲在小深度一维矩形量子阱中激发粒子束缚态的特征。考虑了只有一个能级的浅井的情况。在这种情况下,系统被阿秒脉冲激发,其持续时间短于与阱中粒子束缚态能量相关的特征时间。结果表明,在这种情况下,束缚态的居数和电离概率是由脉冲的电面积与其原子测量的比值决定的,该比值与阱宽度成反比。计算结果表明,具有非零电面积的单极子周期脉冲比具有零电面积的双极脉冲能更快、更有效地激励系统。讨论了利用持续时间为10秒的单极伽马射线脉冲激发氘核的可能性,并给出了所需持续时间和脉冲电面积的数值估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信