GPU-Accelerated Decoding of Integer Lists

Antonio Mallia, Michal Siedlaczek, Torsten Suel, M. Zahran
{"title":"GPU-Accelerated Decoding of Integer Lists","authors":"Antonio Mallia, Michal Siedlaczek, Torsten Suel, M. Zahran","doi":"10.1145/3357384.3358067","DOIUrl":null,"url":null,"abstract":"An inverted index is the basic data structure used in most current large-scale information retrieval systems. It can be modeled as a collection of sorted sequences of integers. Many compression techniques for inverted indexes have been studied in the past, with some of them reaching tremendous decompression speeds through the use of SIMD instructions available on modern CPUs. While there has been some work on query processing algorithms for Graphics Processing Units (GPUs), little of it has focused on how to efficiently access compressed index structures, and we see some potential for significant improvements in decompression speed.\n In this paper, we describe and implement two encoding schemes for index decompression on GPU architectures. Their format and decoding algorithm is adapted from existing CPU-based compression methods to exploit the execution model and memory hierarchy offered by GPUs. We show that our solutions, GPU-BP and GPU-VByte, achieve significant speedups over their already carefully optimized CPU counterparts.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"19 30 1","pages":"2193-2196"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357384.3358067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An inverted index is the basic data structure used in most current large-scale information retrieval systems. It can be modeled as a collection of sorted sequences of integers. Many compression techniques for inverted indexes have been studied in the past, with some of them reaching tremendous decompression speeds through the use of SIMD instructions available on modern CPUs. While there has been some work on query processing algorithms for Graphics Processing Units (GPUs), little of it has focused on how to efficiently access compressed index structures, and we see some potential for significant improvements in decompression speed. In this paper, we describe and implement two encoding schemes for index decompression on GPU architectures. Their format and decoding algorithm is adapted from existing CPU-based compression methods to exploit the execution model and memory hierarchy offered by GPUs. We show that our solutions, GPU-BP and GPU-VByte, achieve significant speedups over their already carefully optimized CPU counterparts.
gpu加速的整数列表解码
倒排索引是目前大多数大型信息检索系统中使用的基本数据结构。它可以被建模为排序的整数序列的集合。过去已经研究了许多倒排索引的压缩技术,其中一些通过使用现代cpu上可用的SIMD指令达到了惊人的解压速度。虽然在图形处理单元(Graphics processing Units, gpu)的查询处理算法上已经做了一些工作,但很少关注如何有效地访问压缩索引结构,我们看到了在解压缩速度方面有一些显著改进的潜力。在本文中,我们描述并实现了两种用于GPU架构索引解压缩的编码方案。它们的格式和解码算法是基于现有的基于cpu的压缩方法,利用gpu提供的执行模型和内存层次结构。我们表明,我们的解决方案,GPU-BP和GPU-VByte,实现显著的速度比他们已经精心优化的CPU对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信