A. Volperts, G. Dobele, J. Ozoliņš, Ņ. Mironova-Ulmane
{"title":"Synthesis and Application of Nanoporous Activated Carbon in Supercapacitors","authors":"A. Volperts, G. Dobele, J. Ozoliņš, Ņ. Mironova-Ulmane","doi":"10.7250/MSAC.2015.003","DOIUrl":null,"url":null,"abstract":"Influence of the thermocatalytical synthesis on the formation of the porous structure and the properties of microporous carbon wood-based materials was shown. It was found that increase of activation temperature and addition ratio of alkali activator can be used to control not only total pore volume, but also micropore and mesopore proportion. The results of tests on the synthesized carbon materials as electrodes in supercapacitors are shown, as well as the influence of properties of the porous structure of carbon materials on working characteristics of electrodes. It was shown that the increase of activation temperature from 600 °C to 800 °C led to an increased proportion of mesopores in the porous structure; this negatively influencen the cell capacity of the supercapacitor. It was found that the most feasible way of production of activated cabons for the use as electrodes in supercapacitors with sulphuric acid-based electrolyte is low-temperature activation.","PeriodicalId":18239,"journal":{"name":"Materials Science and Applied Chemistry","volume":"532 1","pages":"16-20"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7250/MSAC.2015.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Influence of the thermocatalytical synthesis on the formation of the porous structure and the properties of microporous carbon wood-based materials was shown. It was found that increase of activation temperature and addition ratio of alkali activator can be used to control not only total pore volume, but also micropore and mesopore proportion. The results of tests on the synthesized carbon materials as electrodes in supercapacitors are shown, as well as the influence of properties of the porous structure of carbon materials on working characteristics of electrodes. It was shown that the increase of activation temperature from 600 °C to 800 °C led to an increased proportion of mesopores in the porous structure; this negatively influencen the cell capacity of the supercapacitor. It was found that the most feasible way of production of activated cabons for the use as electrodes in supercapacitors with sulphuric acid-based electrolyte is low-temperature activation.