A New Graphene Nanoribbon based Resonant Tunneling Diodes using BN Quantum Well

Farshad Mohajer Yami, S. E. Hosseini
{"title":"A New Graphene Nanoribbon based Resonant Tunneling Diodes using BN Quantum Well","authors":"Farshad Mohajer Yami, S. E. Hosseini","doi":"10.1109/IranianCEE.2019.8786464","DOIUrl":null,"url":null,"abstract":"Negative Differential Resistance (NDR) is a well-known phenomenon in I-V characteristic of some electron devices such as Resonant Tunneling Diodes (RTDs), Esaki diode and resonant tunneling transistors. In this article a Double Barrier Quantum Well structures (DBQW) resonant tunneling diode has been proposed based on graphene nanoribbon and hexagonal-Boron Nitride. Three different channel RTD structures constructed from ZGNRs are proposed. In these structures, highest peak current of 2.1 µA, and lowest valley current 100nA is achieved. The transport properties of DBQW are explored by Non-Equilibrium Green's-Function (NEGF) formalism.","PeriodicalId":6683,"journal":{"name":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","volume":"34 1","pages":"315-317"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IranianCEE.2019.8786464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Negative Differential Resistance (NDR) is a well-known phenomenon in I-V characteristic of some electron devices such as Resonant Tunneling Diodes (RTDs), Esaki diode and resonant tunneling transistors. In this article a Double Barrier Quantum Well structures (DBQW) resonant tunneling diode has been proposed based on graphene nanoribbon and hexagonal-Boron Nitride. Three different channel RTD structures constructed from ZGNRs are proposed. In these structures, highest peak current of 2.1 µA, and lowest valley current 100nA is achieved. The transport properties of DBQW are explored by Non-Equilibrium Green's-Function (NEGF) formalism.
基于BN量子阱的新型石墨烯纳米带共振隧道二极管
负差分电阻(NDR)是谐振隧道二极管(rtd)、Esaki二极管和谐振隧道晶体管等电子器件在I-V特性中普遍存在的现象。提出了一种基于石墨烯纳米带和六方氮化硼的双势垒量子阱结构(DBQW)共振隧道二极管。提出了三种不同的由zgnr构成的通道RTD结构。在这些结构中,最高峰值电流为2.1µA,最低谷电流为100nA。利用非平衡格林函数(NEGF)形式探讨了DBQW的输运性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信