Effect of Nano-doping on the Interface Charge Characteristics of SIR/XLPE Composite Insulation

Chunmiao Ma, Yunxiao Zhang, Yuanxiang Zhou, Ling Zhang, Xin Huang
{"title":"Effect of Nano-doping on the Interface Charge Characteristics of SIR/XLPE Composite Insulation","authors":"Chunmiao Ma, Yunxiao Zhang, Yuanxiang Zhou, Ling Zhang, Xin Huang","doi":"10.1109/ICEMPE51623.2021.9509050","DOIUrl":null,"url":null,"abstract":"In the accessories of the HVDC cables, cross-linked polyethylene (XLPE) as the main insulation and silicone rubber (SIR) as the accessory insulation form a composite insulation structure. Due to the mismatch of the conductivity and permittivity of the two materials, interface charges will accumulate and affect the electrical properties of the composite insulation under DC voltage. Nano-doping of SIR is one of the means to improve its electrical properties. This paper compares the space charge distribution of the composite insulation composed of nano-TiO2 doped SIR and XLPE and the composite insulation composed of pure SIR and XLPE under different DC electric fields. The experiment results show that nano-doping of SIR can reduce the accumulation of the interface charge in the composite insulation structure when the electric field strength is high, while the interface between pure SIR and XLPE accumulates more charges when electric field strength increases.","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"153 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the accessories of the HVDC cables, cross-linked polyethylene (XLPE) as the main insulation and silicone rubber (SIR) as the accessory insulation form a composite insulation structure. Due to the mismatch of the conductivity and permittivity of the two materials, interface charges will accumulate and affect the electrical properties of the composite insulation under DC voltage. Nano-doping of SIR is one of the means to improve its electrical properties. This paper compares the space charge distribution of the composite insulation composed of nano-TiO2 doped SIR and XLPE and the composite insulation composed of pure SIR and XLPE under different DC electric fields. The experiment results show that nano-doping of SIR can reduce the accumulation of the interface charge in the composite insulation structure when the electric field strength is high, while the interface between pure SIR and XLPE accumulates more charges when electric field strength increases.
纳米掺杂对SIR/XLPE复合绝缘界面电荷特性的影响
高压直流电缆附件中,交联聚乙烯(XLPE)为主绝缘,硅橡胶(SIR)为辅绝缘,形成复合绝缘结构。由于两种材料的电导率和介电常数不匹配,界面电荷会累积,影响复合绝缘在直流电压下的电学性能。纳米掺杂SIR是改善其电性能的手段之一。本文比较了纳米tio2掺杂SIR和XLPE组成的复合绝缘体与纯SIR和XLPE组成的复合绝缘体在不同直流电场下的空间电荷分布。实验结果表明,当电场强度较高时,纳米掺杂SIR可以减少复合绝缘结构中界面电荷的积累,而当电场强度增加时,纯SIR与XLPE之间的界面电荷积累更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信