{"title":"Dynamic configuration prefetching based on piecewise linear prediction","authors":"A. Lifa, P. Eles, Zebo Peng","doi":"10.7873/DATE.2013.173","DOIUrl":null,"url":null,"abstract":"Modern systems demand high performance, as well as high degrees of flexibility and adaptability. Many current applications exhibit a dynamic and nonstationary behavior, having certain characteristics in one phase of their execution, that will change as the applications enter new phases, in a manner unpredictable at design-time. In order to meet the performance requirements of such systems, it is important to have on-line optimization algorithms, coupled with adaptive hardware platforms, that together can adjust to the run-time conditions. We propose an optimization technique that minimizes the expected execution time of an application by dynamically scheduling hardware prefetches. We use a piecewise linear predictor in order to capture correlations and predict the hardware modules to be reached. Experiments show that the proposed algorithm outperforms the previous state-of-art in reducing the expected execution time by up to 27% on average.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"30 1","pages":"815-820"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Modern systems demand high performance, as well as high degrees of flexibility and adaptability. Many current applications exhibit a dynamic and nonstationary behavior, having certain characteristics in one phase of their execution, that will change as the applications enter new phases, in a manner unpredictable at design-time. In order to meet the performance requirements of such systems, it is important to have on-line optimization algorithms, coupled with adaptive hardware platforms, that together can adjust to the run-time conditions. We propose an optimization technique that minimizes the expected execution time of an application by dynamically scheduling hardware prefetches. We use a piecewise linear predictor in order to capture correlations and predict the hardware modules to be reached. Experiments show that the proposed algorithm outperforms the previous state-of-art in reducing the expected execution time by up to 27% on average.