Gruson–Serganova character formulas and the Duflo–Serganova cohomology functor

IF 1.2 1区 数学 Q1 MATHEMATICS
M. Gorelik, T. Heidersdorf
{"title":"Gruson–Serganova character formulas and the Duflo–Serganova cohomology functor","authors":"M. Gorelik, T. Heidersdorf","doi":"10.1515/crelle-2022-0080","DOIUrl":null,"url":null,"abstract":"Abstract We establish an explicit formula for the character of an irreducible finite-dimensional representation of g ⁢ l ⁢ ( m | n ) \\mathfrak{gl}(m|n) . The formula is a finite sum with integer coefficients in terms of a basis E μ \\mathcal{E}_{\\mu} (Euler characters) of the character ring. We prove a simple formula for the behavior of the “superversion” of E μ \\mathcal{E}_{\\mu} in the g ⁢ l ⁢ ( m | n ) \\mathfrak{gl}(m|n) and o ⁢ s ⁢ p ⁢ ( m | 2 ⁢ n ) \\mathfrak{osp}(m|2n) -case under the map ds \\mathrm{ds} on the supercharacter ring induced by the Duflo–Serganova cohomology functor DS \\mathrm{DS} . As an application, we get combinatorial formulas for superdimensions, dimensions and g 0 \\mathfrak{g}_{0} -decompositions for g ⁢ l ⁢ ( m | n ) \\mathfrak{gl}(m|n) and o ⁢ s ⁢ p ⁢ ( m | 2 ⁢ n ) \\mathfrak{osp}(m|2n) .","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0080","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We establish an explicit formula for the character of an irreducible finite-dimensional representation of g ⁢ l ⁢ ( m | n ) \mathfrak{gl}(m|n) . The formula is a finite sum with integer coefficients in terms of a basis E μ \mathcal{E}_{\mu} (Euler characters) of the character ring. We prove a simple formula for the behavior of the “superversion” of E μ \mathcal{E}_{\mu} in the g ⁢ l ⁢ ( m | n ) \mathfrak{gl}(m|n) and o ⁢ s ⁢ p ⁢ ( m | 2 ⁢ n ) \mathfrak{osp}(m|2n) -case under the map ds \mathrm{ds} on the supercharacter ring induced by the Duflo–Serganova cohomology functor DS \mathrm{DS} . As an application, we get combinatorial formulas for superdimensions, dimensions and g 0 \mathfrak{g}_{0} -decompositions for g ⁢ l ⁢ ( m | n ) \mathfrak{gl}(m|n) and o ⁢ s ⁢ p ⁢ ( m | 2 ⁢ n ) \mathfrak{osp}(m|2n) .
Gruson-Serganova特征公式和dufl - serganova上同调函子
摘要建立了有限维不可约表示g¹¹(m|n) \mathfrak{gl}(m|n)的一个显式表达式。该公式是基于字符环的基E μ \mathcal{E}_{\mu}(欧拉字符)的整数系数有限和。我们证明了由Duflo-Serganova上同调函子ds \mathrm{ds}导出的超字符环上映射ds \mathrm{ds}下,E μ \mathcal{E}_{\mu}在g _ l _ (m|n) \mathfrak{gl}(m|n)和o _ s _ p _ (m|2 _ n) \mathfrak{osp}(m|2n) -情况下的“逆”行为的一个简单公式。作为应用,我们得到了超维数、维数和g 0 \mathfrak{g}_{0}的组合公式——分解为g _1 (m|n) \mathfrak{gl}(m|n)和0 _ s _ p _ (m|2n) \mathfrak{osp}(m|2n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信