Automated Model Generation for Hybrid Vehicles Optimization and Control

N. Verdonck, A. Chasse, P. Pognant-Gros, A. Sciarretta
{"title":"Automated Model Generation for Hybrid Vehicles Optimization and Control","authors":"N. Verdonck, A. Chasse, P. Pognant-Gros, A. Sciarretta","doi":"10.2516/OGST/2009064","DOIUrl":null,"url":null,"abstract":"Systematic optimization of modern powertrains, and hybrids in particular, requires the representation of the system by means of Backward Quasistatic Models (BQM). In contrast, the models used in realistic powertrain simulators are often of the Forward Dynamic Model (FDM) type. The paper presents a methodology to derive BQM’s of modern powertrain components, as parametric, steady-state limits of their FDM counterparts. The parametric nature of this procedure implies that changing the system modeled does not imply relaunching a simulation campaign, but only adjusting the corresponding parameters in the BQM. The approach is illustrated with examples concerning turbocharged engines, electric motors, and electrochemical batteries, and the influence of a change in parameters on the supervisory control of an hybrid vehicle is then studied offline, in co-simulation and on an HiL test bench adapted to hybrid vehicles (HyHiL).","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"10 1","pages":"115-132"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2009064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Systematic optimization of modern powertrains, and hybrids in particular, requires the representation of the system by means of Backward Quasistatic Models (BQM). In contrast, the models used in realistic powertrain simulators are often of the Forward Dynamic Model (FDM) type. The paper presents a methodology to derive BQM’s of modern powertrain components, as parametric, steady-state limits of their FDM counterparts. The parametric nature of this procedure implies that changing the system modeled does not imply relaunching a simulation campaign, but only adjusting the corresponding parameters in the BQM. The approach is illustrated with examples concerning turbocharged engines, electric motors, and electrochemical batteries, and the influence of a change in parameters on the supervisory control of an hybrid vehicle is then studied offline, in co-simulation and on an HiL test bench adapted to hybrid vehicles (HyHiL).
混合动力汽车优化控制的自动模型生成
现代动力系统,特别是混合动力系统的系统优化,需要用后向准静态模型(BQM)来表示系统。相比之下,实际动力系统模拟器中使用的模型通常是前向动态模型(FDM)类型。本文提出了一种推导现代动力总成部件BQM的方法,将其作为FDM对应部件的参数化稳态极限。该过程的参数化性质意味着改变系统模型并不意味着重新启动模拟活动,而只是调整BQM中的相应参数。以涡轮增压发动机、电动机和电化学电池为例,研究了参数变化对混合动力汽车监督控制的影响,并在离线、联合仿真和适合混合动力汽车的HiL试验台(HyHiL)上进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信