A Novel Approach to Detect Chronic Leukemia using Shape based Feature Extraction and Identification with Digital Image Processing

H. Vaghela, H. Modi, Manoj Pandya, M. Potdar
{"title":"A Novel Approach to Detect Chronic Leukemia using Shape based Feature Extraction and Identification with Digital Image Processing","authors":"H. Vaghela, H. Modi, Manoj Pandya, M. Potdar","doi":"10.5120/IJAIS2016451607","DOIUrl":null,"url":null,"abstract":"In this paper, some shape based features like area, perimeter, roundness, standard deviation etc. are used to recognize different types of white blood cells like monocyte, lymphocytes, eosinophil, basophil, neutrophils etc. Using image processing techniques, result can be obtained within 34 minute. To perform shape base features operation, contrast of RGB image has to be increased for better detection of white cells. After recognition of each and every cell, classification is performed to detect either it is CML (Chronic Myelogenous Leukemia) or CLL (chronic Lymphocytic leukemia). This algorithm is performed on 30 images. Out of 30, it is successful on 28 images. So it gives accuracy of 93.33%.","PeriodicalId":92376,"journal":{"name":"International journal of applied information systems","volume":"45 1","pages":"9-16"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied information systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5120/IJAIS2016451607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, some shape based features like area, perimeter, roundness, standard deviation etc. are used to recognize different types of white blood cells like monocyte, lymphocytes, eosinophil, basophil, neutrophils etc. Using image processing techniques, result can be obtained within 34 minute. To perform shape base features operation, contrast of RGB image has to be increased for better detection of white cells. After recognition of each and every cell, classification is performed to detect either it is CML (Chronic Myelogenous Leukemia) or CLL (chronic Lymphocytic leukemia). This algorithm is performed on 30 images. Out of 30, it is successful on 28 images. So it gives accuracy of 93.33%.
一种基于形状特征提取和数字图像处理的慢性白血病检测新方法
本文利用一些基于形状的特征,如面积、周长、圆度、标准差等来识别不同类型的白细胞,如单核细胞、淋巴细胞、嗜酸性粒细胞、嗜碱性粒细胞、中性粒细胞等。采用图像处理技术,可在34分钟内得到结果。在进行形状基特征运算时,需要提高RGB图像的对比度,以便更好地检测出白细胞。在对每个细胞进行识别后,进行分类以检测是CML(慢性髓性白血病)还是CLL(慢性淋巴细胞白血病)。该算法在30张图像上执行。在30张图片中,有28张是成功的。故准确率为93.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信