Stress–temperature equations of motion of Ignaczak and Beltrami–Michell types in arbitrary curve coordinate system: معادلات الحركة بلغة الإجهادات والحرارة من نوعي إغناتشاك وبيلترامي– ميشيل في أي نظام احداثي منحني

Waad Samir Attiah, Mountajab Al-Hasan
{"title":"Stress–temperature equations of motion of Ignaczak and Beltrami–Michell types in arbitrary curve coordinate system: معادلات الحركة بلغة الإجهادات والحرارة من نوعي إغناتشاك وبيلترامي– ميشيل في أي نظام احداثي منحني","authors":"Waad Samir Attiah, Mountajab Al-Hasan","doi":"10.26389/ajsrp.w160620","DOIUrl":null,"url":null,"abstract":"This paper relates to the mathematical linear model of the elastic, homogeneous and isotropic body, with neglected structure and infinitesimal elastic strains, subjected to temperature field; discussed by Hooke, and shortly called (H). We firstly introduce the variable tensorial forms of the traditional and Lame descriptions of the coupled dynamic state of considerable Hooke body, in an arbitrary curve coordinate system. We study the variable tensorial forms in an arbitrary curve coordinate system, of the generalized Beltrami–Michell stress-temperature equations, and of the stress-temperature Ignaczak equations and its completeness problem for the (H) thermoelastic body.  ","PeriodicalId":16473,"journal":{"name":"Journal of natural sciences, life and applied sciences","volume":"235 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of natural sciences, life and applied sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26389/ajsrp.w160620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper relates to the mathematical linear model of the elastic, homogeneous and isotropic body, with neglected structure and infinitesimal elastic strains, subjected to temperature field; discussed by Hooke, and shortly called (H). We firstly introduce the variable tensorial forms of the traditional and Lame descriptions of the coupled dynamic state of considerable Hooke body, in an arbitrary curve coordinate system. We study the variable tensorial forms in an arbitrary curve coordinate system, of the generalized Beltrami–Michell stress-temperature equations, and of the stress-temperature Ignaczak equations and its completeness problem for the (H) thermoelastic body.  
在空间研究系统中基于压力和温度的动力学方程式。
本文讨论了温度场作用下,忽略结构和无穷小弹性应变的弹性、均匀和各向同性物体的数学线性模型;我们首先介绍了在任意曲线坐标系下对相当大的胡克体耦合动态的传统和Lame描述的变张量形式。研究了任意曲线坐标系下广义beltrami - michel应力-温度方程和(H)热弹性体应力-温度Ignaczak方程的变张量形式及其完备性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信