Evolution of the structure of annealed hafnium bronze nanostructured by high pressure torsion

A. Stolbovsky, V. Popov, R. Falahutdinov, S. Murzinova
{"title":"Evolution of the structure of annealed hafnium bronze nanostructured by high pressure torsion","authors":"A. Stolbovsky, V. Popov, R. Falahutdinov, S. Murzinova","doi":"10.17804/2410-9908.2021.1.038-050","DOIUrl":null,"url":null,"abstract":"The effect of severe plastic deformation by 1, 3 and 5 revolutions of high pressure torsion (HPT) on the structure and mechanical properties of low-alloyed hafnium bronze Cu–0.78wt%Hf is studied. In the initial annealed state, hafnium is almost completely bonded into intermetallic com-pounds. It has been found that the structure of all the investigated bronze specimens subjected to HPT is stable and that it remains unchanged after unloading and prolonged ageing at room tempera-ture. It is shown that all the specimens develop a dispersed submicrocrystalline structure gradient along the radius of the disk, with an average crystallite size of 200 nm after 1 revolution to 120 nm after 5 revolutions (at mid-radius). The structure is non-uniform even after 5 revolutions, this being confirmed by microhardness measurements. The high-pressure-torsion behavior of hafnium bronze with Hf bonded into precipitates has much in common with the behavior of pure copper. At the same time, in terms of the stability of the obtained structures at room temperature, the behavior of the alloy under study demonstrates much in common with that of low-alloyed tin bronze.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2021.1.038-050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of severe plastic deformation by 1, 3 and 5 revolutions of high pressure torsion (HPT) on the structure and mechanical properties of low-alloyed hafnium bronze Cu–0.78wt%Hf is studied. In the initial annealed state, hafnium is almost completely bonded into intermetallic com-pounds. It has been found that the structure of all the investigated bronze specimens subjected to HPT is stable and that it remains unchanged after unloading and prolonged ageing at room tempera-ture. It is shown that all the specimens develop a dispersed submicrocrystalline structure gradient along the radius of the disk, with an average crystallite size of 200 nm after 1 revolution to 120 nm after 5 revolutions (at mid-radius). The structure is non-uniform even after 5 revolutions, this being confirmed by microhardness measurements. The high-pressure-torsion behavior of hafnium bronze with Hf bonded into precipitates has much in common with the behavior of pure copper. At the same time, in terms of the stability of the obtained structures at room temperature, the behavior of the alloy under study demonstrates much in common with that of low-alloyed tin bronze.
高压扭转退火铪青铜纳米结构的演变
研究了1转、3转和5转高压扭转(HPT)剧烈塑性变形对低合金Cu-0.78wt %Hf铪青铜组织和力学性能的影响。在初始退火状态下,铪几乎完全结合成金属间化合物。结果表明,所有经高温高压热处理的青铜试样结构稳定,在室温下卸载和长时间老化后结构保持不变。结果表明,所有试样沿圆盘半径方向呈分散的亚微晶结构梯度,1转后平均晶粒尺寸为200 nm, 5转后平均晶粒尺寸为120 nm(中半径处)。显微硬度测量证实,即使转了5圈,结构也不均匀。当Hf键合成析出相时,含铪青铜的高压扭转行为与纯铜的高压扭转行为有很多共同之处。同时,在室温下获得的组织稳定性方面,所研究的合金的行为与低合金锡青铜的行为有很多共同之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信