Detecting the mechanisms of longitudinal salt transport during spring tides in Qiantang Estuary

IF 2.6 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Ruohua Li, Liang Gao, C. Pan, Y. Pang
{"title":"Detecting the mechanisms of longitudinal salt transport during spring tides in Qiantang Estuary","authors":"Ruohua Li, Liang Gao, C. Pan, Y. Pang","doi":"10.1080/1943815X.2019.1652190","DOIUrl":null,"url":null,"abstract":"ABSTRACT Saltwater intrusion has immediate influences on the water resources utilization, aquatic environment and ecological system. Hence, it is essential to detect the mechanisms of salt transport. This study adopted observations including instantaneous flow velocities, tide levels and salinity during 10 tide cycles at 2 stations in upstream and downstream of Qiantang Estuary in China. The variables of instantaneous flow velocity and salinity were decomposed into the time-average, time-varying and vertical-varying components using the flux decomposition model. Then, the salt flux components attributed to various physical processes were quantified. During spring tides, the longitudinal salt transport is controlled by advection transport and tidal pumping transport in the upper river reaches, while being mainly controlled by advection transport in the lower river reaches. The net water flow fluxes and salt fluxes are landward in the lower river reaches. However, the transport direction of the salt fluxes is inconsistent with that of the net water flow fluxes in the upper river reaches, where the net water flow fluxes are mainly seaward while the net salt fluxes are mainly landward. In general, there are significant positive correlations between the net landward salt flux and the tidal range. Thus, the tidal range can be used as an important indicator for determining the required amount of freshwater to be discharged from the reservoir in order to resist saltwater intrusion. The vertical distribution of salt in Qiantang Estuary is relatively uniform. The vertical shear force has limited influence on the salt transport. The research results are expected to supply a reference to future research on other macro-tide estuaries.","PeriodicalId":16194,"journal":{"name":"Journal of Integrative Environmental Sciences","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Environmental Sciences","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1943815X.2019.1652190","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Saltwater intrusion has immediate influences on the water resources utilization, aquatic environment and ecological system. Hence, it is essential to detect the mechanisms of salt transport. This study adopted observations including instantaneous flow velocities, tide levels and salinity during 10 tide cycles at 2 stations in upstream and downstream of Qiantang Estuary in China. The variables of instantaneous flow velocity and salinity were decomposed into the time-average, time-varying and vertical-varying components using the flux decomposition model. Then, the salt flux components attributed to various physical processes were quantified. During spring tides, the longitudinal salt transport is controlled by advection transport and tidal pumping transport in the upper river reaches, while being mainly controlled by advection transport in the lower river reaches. The net water flow fluxes and salt fluxes are landward in the lower river reaches. However, the transport direction of the salt fluxes is inconsistent with that of the net water flow fluxes in the upper river reaches, where the net water flow fluxes are mainly seaward while the net salt fluxes are mainly landward. In general, there are significant positive correlations between the net landward salt flux and the tidal range. Thus, the tidal range can be used as an important indicator for determining the required amount of freshwater to be discharged from the reservoir in order to resist saltwater intrusion. The vertical distribution of salt in Qiantang Estuary is relatively uniform. The vertical shear force has limited influence on the salt transport. The research results are expected to supply a reference to future research on other macro-tide estuaries.
钱塘江口大潮期间纵向盐输运机制研究
盐水入侵对水资源利用、水生环境和生态系统有着直接的影响。因此,研究盐的转运机制是十分必要的。本研究采用钱塘江口上游和下游2个站点10个潮汐周期的瞬时流速、潮位和盐度观测数据。利用通量分解模型将瞬时流速和盐度变量分解为时均、时变和垂变分量。然后,量化了各种物理过程的盐通量分量。春潮期间,上游纵向盐输运受平流输运和潮汐泵输运控制,下游主要受平流输运控制。净水流通量和盐通量在下游向陆地方向移动。但在上游,盐通量的输运方向与净水流通量的输运方向不一致,净水流通量以向海方向为主,净盐通量以向陆方向为主。总体而言,净向陆盐通量与潮差之间存在显著的正相关关系。因此,潮汐差可以作为一个重要的指标,用于确定水库所需的淡水排水量,以抵御盐水的入侵。钱塘江口盐的垂直分布较为均匀。垂直剪切力对盐运移的影响有限。研究结果有望为今后其他宏观潮口的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: Journal of Integrative Environmental Sciences (JIES) provides a stimulating, informative and critical forum for intellectual debate on significant environmental issues. It brings together perspectives from a wide range of disciplines and methodologies in both the social and natural sciences in an effort to develop integrative knowledge about the processes responsible for environmental change. The Journal is especially concerned with the relationships between science, society and policy and one of its key aims is to advance understanding of the theory and practice of sustainable development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信