Data Privacy for Big Data Publishing Using Newly Enhanced PASS Data Mining Mechanism

Priyank Jain, Manasi Gyanchandani, N. Khare
{"title":"Data Privacy for Big Data Publishing Using Newly Enhanced PASS Data Mining Mechanism","authors":"Priyank Jain, Manasi Gyanchandani, N. Khare","doi":"10.5772/INTECHOPEN.77033","DOIUrl":null,"url":null,"abstract":"Anonymization is one of the main techniques that is being used in recent times to prevent privacy breaches on the published data; one such anonymization technique is k-anonymiz-ation technique. The anonymization is a parametric anonymization technique used for data anonymization. The aim of the k-anonymization is to generalize the tuples in a way that it cannot be identified using quasi-identifiers. In the past few years, we saw a tremendous growth in data that ultimately led to the concept of the big data. The growth in data made anonymization using conventional processing methods inefficient. To make the anonymi- zation more efficient, we used the proposed PASS mechanism in Hadoop framework to reduce the processing time of anonymization. In this work, we have divided the whole program into the map and reduce part. Moreover, the data types used in Hadoop provide better serialization and transport of data. We performed our experiments on the large dataset. The results proved the best efficiency of our implementation.","PeriodicalId":91437,"journal":{"name":"Advances in data mining. Industrial Conference on Data Mining","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in data mining. Industrial Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.77033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Anonymization is one of the main techniques that is being used in recent times to prevent privacy breaches on the published data; one such anonymization technique is k-anonymiz-ation technique. The anonymization is a parametric anonymization technique used for data anonymization. The aim of the k-anonymization is to generalize the tuples in a way that it cannot be identified using quasi-identifiers. In the past few years, we saw a tremendous growth in data that ultimately led to the concept of the big data. The growth in data made anonymization using conventional processing methods inefficient. To make the anonymi- zation more efficient, we used the proposed PASS mechanism in Hadoop framework to reduce the processing time of anonymization. In this work, we have divided the whole program into the map and reduce part. Moreover, the data types used in Hadoop provide better serialization and transport of data. We performed our experiments on the large dataset. The results proved the best efficiency of our implementation.
基于新增强的PASS数据挖掘机制的大数据发布数据隐私
匿名化是最近使用的主要技术之一,用于防止发布数据的隐私泄露;其中一种匿名化技术是k- anonymization技术。匿名化是一种用于数据匿名化的参数匿名化技术。k-匿名化的目的是以一种不能使用准标识符标识元组的方式泛化元组。在过去的几年里,我们看到了数据的巨大增长,最终导致了大数据的概念。数据的增长使得使用传统处理方法的匿名化效率低下。为了提高匿名化的效率,我们在Hadoop框架中使用了提出的PASS机制来减少匿名化的处理时间。在这项工作中,我们将整个程序划分为map和reduce两个部分。此外,Hadoop中使用的数据类型提供了更好的数据序列化和传输。我们在大数据集上进行实验。结果证明了我们实施的最佳效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信