{"title":"A method for finding similarity between multi-layer perceptrons by Forward Bipartite Alignment","authors":"Stephen C. Ashmore, Michael S. Gashler","doi":"10.1109/IJCNN.2015.7280769","DOIUrl":null,"url":null,"abstract":"We present Forward Bipartite Alignment (FBA), a method that aligns the topological structures of two neural networks. Neural networks are considered to be a black box, because neural networks have a complex model surface determined by their weights that combine attributes non-linearly. Two networks that make similar predictions on training data may still generalize differently. FBA enables a diversity of applications, including visualization and canonicalization of neural networks, ensembles, and cross-over between unrelated neural networks in evolutionary optimization. We describe the FBA algorithm, and describe implementations for three applications: genetic algorithms, visualization, and ensembles. We demonstrate FBA's usefulness by comparing a bag of neural networks to a bag of FBA-aligned neural networks. We also show that aligning, and then combining two neural networks has no appreciable loss in accuracy which means that Forward Bipartite Alignment aligns neural networks in a meaningful way.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"15 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We present Forward Bipartite Alignment (FBA), a method that aligns the topological structures of two neural networks. Neural networks are considered to be a black box, because neural networks have a complex model surface determined by their weights that combine attributes non-linearly. Two networks that make similar predictions on training data may still generalize differently. FBA enables a diversity of applications, including visualization and canonicalization of neural networks, ensembles, and cross-over between unrelated neural networks in evolutionary optimization. We describe the FBA algorithm, and describe implementations for three applications: genetic algorithms, visualization, and ensembles. We demonstrate FBA's usefulness by comparing a bag of neural networks to a bag of FBA-aligned neural networks. We also show that aligning, and then combining two neural networks has no appreciable loss in accuracy which means that Forward Bipartite Alignment aligns neural networks in a meaningful way.